amaths

2007-12-15 10:58 pm
The circles C1:x^2+y^2+4x-2y+1=0
C2:x^2+y^2+10x+4y+F=0
intersect each other at two points P and Q,where the equation of the line PQ is x+y+3=0
(a)Find the value of F
(b)M is an external point on C1 and C2.If M lies on the line PQ,show that the length of the tangent from M to C1 is equal to the length of tangent from M to C

回答 (1)

2007-12-15 11:45 pm
✔ 最佳答案
(a)
Common chord=C2 - C1 (C1 - C2 都得,你鐘意)
6X + 6Y + F-1 = 0
X + Y + (F-1)/6 =0
(F -1)/6 =3
F = 19
(b)
因為 lies on PQ,
所以 M=(x, -x-3)
radius of c1=2 (用公式)
centre of c1=(-2,1) (用公式)

radius of c2 = (開方40)/2 (用公式)
centre of c2=(-5,-2) (用公式)

因為tangent同radius會形成90度,所以用pyth就搵倒tangent ge length
length of tangent form M to C1=(x+2)^2 + (-x-3+2)^2 - 2^2

.. .. . .. .... .... ... to c2=(x+5)^2 + (-x-3+2)^2 - { (開方40)/2 } ^2
之後就會計倒2條length係一樣(in terms of x)


收錄日期: 2021-04-23 14:18:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071215000051KK02003

檢視 Wayback Machine 備份