A.math - trigonometry identities

2007-12-14 6:35 am
Prove the following identities.
(a) (sin a)^4 - (cos a)^4 = 2 (sin a)^2 - 1

(b) (1+cos a+sin a) / (1+cos a - sin a) = (1+sin a) / cos a

(c) tan a‧(1 - sin a) / 1+cos a) = cot a‧(1 - cos a) / (1+sin a)

回答 (1)

2007-12-14 6:55 am
✔ 最佳答案
(a) LHS
= sin⁴a - cos⁴a
= (sin²a - cos²a) (sin²a + cos²a)
= [sin²a - (1 - sin²a)] (1)
= 2sin²a - 1
= RHS

(b) LHS
= (1+cos a+sin a) / (1+cos a - sin a)
= (1+cos a+sin a) / (1+cos a - sin a) x (1+cos a+sin a) / (1+cos a+sin a)
= [1 + 2cos a + cos²a + 2sin a(1+cos a) + sin²a] / (1 + 2cos a + cos²a - sin²a)
= [2 + 2cos a + 2sin a(1+cos a)] / (2cos a + 2cos²a)
= [2(1 + cos a) + 2sin a(1+cos a)] / [2 cos a(1 + cosa)]
= (1 + sin a) / cos a
= RHS

(c) LHS
= tan a‧(1 - sin a) / (1 + cos a)
= [tan a‧(1 - sin a) / (1 + cos a)]‧[(1 + sin a)(1 - cos a)] / [(1 + sin a)(1 - cos a)]
= tan a‧(1 - sin²a)(1 - cos a) / [(1 - cos²a) (1 + sin a)]
= tan a‧cos²a(1 - cos a) / [sin²a(1 + sin a)]
= cot a‧(1 - cos a) / (1 + sin a)
= RHS


收錄日期: 2021-04-13 14:43:28
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071213000051KK04130

檢視 Wayback Machine 備份