[奧林匹克挑戰題]2

2007-12-14 5:59 am
Question:

回答 (2)

2007-12-14 6:44 am
✔ 最佳答案
[(p+q)/r]+[(q+r)/p]+[(r+p)/q]
>((p+q)/r-1)+((q+r)/p-1)+((r+p)/q-1)
=(p+q)/r+(q+r)/p+(r+p)/q-3
=(p/q+q/p)+(p/r+r/p)+(q/r+r/q)-3
>=2+2+2-3
=3
Since [(p+q)/r]+[(q+r)/p]+[(r+p)/q] is an integer
The possible minimum value is 4 and this value can be attained
For example p=6,q=8,r=9
2007-12-14 6:22 am
the answer is 8


收錄日期: 2021-04-22 00:31:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071213000051KK03909

檢視 Wayback Machine 備份