✔ 最佳答案
具有螢光性的分子吸收入射光的能量後,其中的電子從基態S0(通常為自旋單重態)躍遷至具有相同自旋多重度的激發態,即,這裡h = 普朗克常數 ,νEX = 入射光光子的頻率。處於激發態的電子可以通過各種不同的途徑釋放其能量回到基態。比如電子可以從經由非常快的(短於10 − 12 秒)內轉換過程無輻射躍遷至能量稍低並具有相同自旋多重度的激發態:,緊接著從以發光的方式釋放出能量回到基態S0:,這裡發出的光就是螢光,其頻率為νF。由於激發態的能量低於,故在這一過程中發出的螢光的頻率νF低於入射光的頻率νEX。螢光態的壽命為10 − 8至10 − 5秒,這就是前面提到的"立即"退激發的具體含義。通常電子從激發態躍遷至的內轉換過程非常的快,而且產生螢光的物質的分子可以通過所謂的振動弛豫過程很快地(約10 − 11 秒)經由碰撞達到熱平衡,這兩個效應使得絕大部分螢光源自於振動基態。總結產生螢光的反應過程為:
電子也可以從激發態經由系間跨越過程無輻射躍遷至能量較低且具有不同自旋多重度的激發態(通常為自旋三重態),再經由內轉換過程無輻射躍遷至激發態,然後以發光的方式釋放出能量而回到基態S0。由於激發態和基態S0具有不同的自旋多重度,這一躍遷過程是被躍遷選擇規則禁戒的,從而需要比釋放螢光長的多的時間(從10 − 4秒到數分鐘乃至數小時不等)來完成這個過程;而且與螢光過程不同,當停止入射光後,物質中還有相當數量的電子繼續保持在亞穩態上並持續發光直到所有的電子回到基態。這種緩慢釋放的光被稱為磷光。
以上提到的電子退激發的機制可以用Jablonski 圖來表示。
螢光物質的量子效率定義為出射螢光光子數和入射光光子數的比。
此外,就發光細胞而言,螢光的產生是一種氧化反應,因此必須在有氧氣的環境下方能進行。細菌細胞中會產生一種發光酵素(luciferase)及醛類發光基質,而經由氧氣與能量物質的參與,共同反應而發出螢光;與螢火蟲的發光反應很類似。只是二者不同之處在於能量的供應有所不同;螢火蟲的發光能量來自三磷酸腺(ATP),而細菌的發光能量則來自黃素單核酸(FMNH2)。細菌發光的反應式如下。
由於醛類發光基質受到氧化,反應後成為一種酸類,且FMNH2亦氧化成為氧化態的FMN,因此這在化學反應上而言是一個氧化及釋放能量的過程,而釋放出的能量便是以發出螢光的形式表現出來。事實上,自然界中(尤其是海洋中)存在著許多發光細菌,但因這些細菌的分佈不夠密集,其微弱的發光現象便因亮度不夠而被我們忽略了。而唯有當大量發光細菌聚集在一起共同發光時,才能形成我們肉眼可以觀看到的發光現象。這也是為什麼通常只在具有發光器的海洋動物中才觀察到生物螢光的原因(發光器中聚集共生著高密度的發光細菌)。
-----------------------------------------------------------
Answer:====
常見的螢光燈就是一個例子。 燈管內部被抽成真空再注入少量的水銀。燈管電極的放電使水銀發出紫外波段的光。這些紫外光是不可見的,並且對人體有害。所以燈管內壁覆蓋了一層稱作磷(熒)光體的物質,它可以吸收那些紫外光併發出可見光。
可以發出白色光的發光二極管(LED)也是基於類似的原理。由半導體發出的光是藍色的,這些藍光可以激發附著在反射極上的磷(熒)光體,使它們發出橙色的螢光,兩種顏色的光混合起來就近似地呈現出白光。