✔ 最佳答案
(1) Find the range of real values of k if x^2 + 2(1+k) + (3+k) >_ (larger or equal to) 0 for all real values of x.
The equation has no solution or one repeated root [not delta>=0 as when the equation >0,it means that the graph is always above the x-axis and no interception between the graph and x-axis]
delta<=0
4(1+k)^2-4(3+k)<=0
4(1+2k+k^2)-12-4k<=0
4k^2+4k-8<=0
k^2+k-2<=0
(k+2)(k-1)<=0
-2<=k<=1
2. Find the range of real values of k if -2x^2 + 3x - (3k+1) < 0 for all real values of x.
[the graph never intercept with the x-axis]
delta<0
3^2-4(-2)[-(3k+1)]<0
9-8(3k+1)<0
9-24k-8<0
1<24k
k>1/24
3.Find the range of real values of k if (3k-1)x^2 - 2x + (k-1) <_ 0 for all real values of x.
delta<=0 [sinilar as (1)]
4-4(3k-1)(k-1)<=0
4-4(3k^2-4k+1)<=0
-12k^2+16k<=0
12k^2-16k>=0
k(3k-4)>=0
k<=0 or k>=4/3
combine with (3k-1)<0 ==>k<1/3
(k<=0 or k>=4/3) and k<1/3
k<=0
[以前個2題唔使係因為開口方向同k冇關,唔使理,但呢題有關,因為(3k-1)必須<0先會開口向下,相反(3k-1)大過)會導致開口向上,圖像會與x軸有交點]
2007-12-10 16:47:39 補充:
如上,不等號使5使調轉??? e.g.-a -b當乘或除以一個負數去另一邊時,不等號就要轉!!
2007-12-11 13:32:35 補充:
如果圖像y=f(x)大於或小於0,即係同x軸冇交點,delta =0