✔ 最佳答案
Let the name of the sequence be sequence A
Let T(1) = 3 , T(2) = 9 , T(3) = 11 , T(4) = 17 , T(5) = 19 , T(6) = 25
T(2) - T(1) = 9 - 3 = 6
T(3) - T(2) = 11 - 9 = 2
T(4) - T(3) = 17 - 11 = 6
T(5) - T(4) = 19 - 17 = 2
T(6) - T(5) = 25 - 19 = 6
咁樣好難直接睇得出佢嘅general term。
不如咁樣,我哋首先將sequence A拆開做sequence B和sequence C,其中sequence B取sequence A的第單數項,其中sequence C取sequence A的第雙數項,如下:
sequence B: 3, 11, 19, …
sequence C: 9, 17, 25, …
不難看出,sequence B和sequence C都是arithmetic sequence,而且佢哋嘅common difference都是8。
但咁樣都仲未夠,我哋仲要喺sequence B和sequence C嘅項與項之間各加上一項,形成sequence D和sequence E,使sequence A的第單數項是等價於取自sequence D的第單數項,使sequence A的第雙數項是等價於取自sequence E的第雙數項。
其實加上甚麼項都可以,因為我最後會有啲方法整到佢哋無效。不過既然sequence B和sequence C都是arithmetic sequence,而arithmetic sequence嘅general term確實咁容易搵,咁我哋要整到sequence D和sequence E仍然是arithmetic sequence。
整完出嚟嘅sequence D和sequence E係咁樣嘅:
sequence D: 3, 7, 11, 15, 19, 23, …
sequence E: 5, 9, 13, 17, 21, 25, …
the general term T1(n) of sequence D
= 3 + (n - 1)4
= 3 + 4n - 4
= 4n - 1
the general term T2(n) of sequence E
= 5 + (n - 1)4
= 5 + 4n - 4
= 4n + 1
∴the general term T(n) of sequence A
圖片參考:
http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/T_1n_T_2n.jpg
但這表達式肯定不能令人滿足,所以我哋要進一步簡化至唔駛分case。
現在的要求是:當n是單數,就用T1(n)的值;當n是雙數,就用T2(n)的值。
但是合併case,就要兩個都要同時用,咁點算呢?
我哋可以咁樣解決嘅:無論n是單數還是雙數,T1(n)和T2(n)的值都同時用哂。只不過當n是單數的時候,我哋就特登做啲手腳,令到T2(n)的值用咗等於冇用;當n是雙數的時候,我哋就特登做啲手腳,令到T1(n)的值用咗等於冇用。
點樣用咗等於冇用呀?
最直接的方法當然是把T(n)表達至這樣式:
T(n) = T1(n)h1(n) + T2(n)h2(n)
圖片參考:
http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/h_1n_h_2n.jpg
當然這樣不能直接寫做答案啦!我哋仲要搵埋T1(n)同埋T2(n)嫁!
嚟到呢度,令我諗起(- 1)ⁿ。
圖片參考:
http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/-1n.jpg
這正正符合T1(n)和T2(n)的要求。
圖片參考:
http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/h_1n_h_2n_answer.jpg
Hence the general term T(n) of sequence A
圖片參考:
http://i212.photobucket.com/albums/cc82/doraemonpaul/yahoo_knowledge/final.jpg
∴the general term of the sequence 3 , 9 , 11 , 17 , 19 , 25 , ... is T(n) = 4n + (- 1)ⁿ