conceptual question on limit,sequence

2007-12-08 5:50 am
this is the AL past paper question
http://www2.hkedcity.net/sch_files/a/kst/kst-06185/public_html/20042q5(q).jpg

here is the suggested solution.
http://www2.hkedcity.net/sch_files/a/kst/kst-06185/public_html/20042q5.jpg

============
my question is, why i should state that

because I(n) is converge, so I(n)=n!

我照代公式, concept上有咩錯 ? what is the significance of that statement?

thz

回答 (2)

2007-12-12 8:36 pm
✔ 最佳答案
我個人認為
I(n) is converge 這句理應是指 I(n)這個積分是會收歛。而不是指個序列{I(1),I(2),I(3)...}(I(n)=n!一定不會收歛)因為會收歛﹐所以即是有界。這保證了由任意一個n走去n+1時不會由有限值變成了無限。I(n+1)=(n+1)I(n)成立。若果不是的話﹐有可能I(n)是有限﹐但I(n+1)是無限(其實邏輯上來說應該是有可能的﹐至少是要證明的)﹐則這條式便不成立了。
不過其實我覺得考試寫不寫都是沒甚麼所謂的。你照寫I(n+1)=(n+1)I(n)便是了。因為條題目最重要是考integration by part 和 l'hospital rule 而不是這些細微東西。(就算題目無寫 I(n) is converge ﹐你會走去證它是converge嗎?)﹐又例如課本歸約公式的題目﹐有多少條寫 I(n) is converge ? 又例如你另外出的那條題目都無寫I(n) is converge﹐難道你又去證明 I(n) is converge ? 所以不用花時間去想這些問題。而且要證明I(n)是不是converge 并不是易事。

2007-12-08 6:37 am
Since the prove in part (a ii) has a assumption that I(n) is converge,you cannot use the result of part (a ii) if you doesn't state I(n) is converge .


收錄日期: 2021-04-25 16:57:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071207000051KK03674

檢視 Wayback Machine 備份