A.MATHS問題....唔該!!

2007-12-06 5:22 pm
Find a point on the line x+y=1 which is equidisant from (2,2) and (3,-1).

唔該幫幫手= =

回答 (2)

2007-12-06 5:41 pm
✔ 最佳答案
let the point be (x1,y1)

i.e. (x1-2)^2+(y1-2)^2 = (x1-3)^2+(y1+1)^2

since (x1,y1) is on the line x+y=1
we will have
x1+y1=1 => y1=1-x1

hence,
(x1-2)^2+[(1-x1)-2]^2 = (x1-3)^2+[(1-x1)+1]^2
(x1-2)^2+(-x1-1)^2 = (x1-3)^2+ (2-x1)^2
x1^2-4x1+4+x1^2+2x1+1=x1^2-6X1+9+x1^2-4x1+4
8x1=8
x1=1
y1=1-(1)=0

i.e. the point is (1,0)
2007-12-08 1:31 am
the point is (1,0)


收錄日期: 2021-04-21 12:59:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071206000051KK00497

檢視 Wayback Machine 備份