咩叫做DNA?(急)

2007-12-04 3:23 am
咩叫做DNA?(急)要詳細解釋!!!!!!!

回答 (6)

2007-12-04 3:28 am
✔ 最佳答案
DNA又叫基因

基因
[編輯首段]維基百科,自由的百科全書


基因片段
基因一詞來自希臘語,意思為「生」。是指攜帶有遺傳信息的DNA序列,是控制性狀的基本遺傳單位。基因通過指導蛋白質的合成來表達自己所攜帶的遺傳信息,從而控制生物個體的性狀表現。人類約有兩萬至兩萬五千個基因。
染色體在體細胞中是成對存在的,每條染色體上都帶有一定數量的基因。
一般來說,生物體中的每個細胞都含有相同的基因,但並不是每個細胞中的每個基因所攜帶的遺傳信息都會被表達出來。不同部位和功能的細胞,能將遺傳信息表達出來的基因也不同。
目錄
[隱藏]
1 早期關於遺傳物質的臆測
2 「基因」概念的提出
3 基因結構和功能的探索
4 基因概念的進一步發展

[編輯] 早期關於遺傳物質的臆測
關於遺傳物質基礎,科學家早就有所臆測。1864年英國哲學家斯賓塞曾提出「生理單位」,1868年達爾文將其稱為「微芽」,1884年瑞士植物學家馮內格列稱之為「異胞質」,1889年荷蘭學者德弗裡斯稱為「泛生子」。1883年德國魏斯曼稱之為「種質」,並指明生殖細胞中的染色體便是種質,認為種質是遺傳的,體質不遺傳,種質影響體質,而體質不影響種質。這在理論上為重新發現和廣為人們接受的孟德爾遺傳規律鋪平了道路 。
[編輯] 「基因」概念的提出
遺傳學的奠基人奧地利人孟德爾(Gregor Johann Mendel 1822~1884),在布爾諾(Brno, 德Brünn,現屬捷克)的奧古斯丁教派修道院的菜園裡,工作了8年,於1865年2月在奧地利自然科學學會會議上報告了自己植物雜交研究結果,第二年在奧地利自然科學學會年刊上發表了著名的《植物雜交試驗》的論文,發現了遺傳學的兩個基本規律——分離律和自由組合規律。文中指出,生物每一個性狀都是通過遺傳因子來傳遞的,遺傳因子是一些獨立的遺傳單位。這樣把可觀察的遺傳性狀和控制它的內在的遺傳因子區分開來了,遺傳因子作為基因的雛形名詞誕生了。基因的存在最早是由他在19世紀推斷出來的,並不是觀察的結果。在達爾文發表進化論後不久,他試圖通過對豌豆進行試驗來對此解釋該理論。但是直到19世紀末他的研究才被人們所重視。雖然孟德爾還不知道這種物質是以怎樣的方式存在,也不知道它的結構是怎樣的,但孟德爾「遺傳因子」的提出畢竟為現代基因概念的產生奠定了基礎。
可以說,遺傳因子實際上是孟德爾根據其實驗結果所虛擬假想的某種東西,從那時起遺傳學家踏上了尋找基因實體的艱難歷程。1903年薩頓(W.S. Sutton 1877~1916)和鮑維里(T.Boveri 1862~1915)兩人注意到在雜交試驗中遺傳因子的行為與減數分裂和受精中染色體的行為非常吻合,他們作出「遺傳因子位於染色體上」的「薩頓—鮑維里假想」:他們根據各自的研究,認為孟德爾的「遺傳因子」與配子形成和受精過程中的染色體傳遞行為具有平行性,並提出了遺傳的染色體學說,認為孟德爾的遺傳因子位於染色體上,即承認染色體是遺傳物質的載體,第一次把遺傳物質和染色體聯繫起來。這種假想可以很好地解釋孟德爾的兩大規律,在以後的科學實驗中也得到了證實。1909年丹麥遺傳學家詹森(W.Johansen 1859~1927)在《精密遺傳學原理》一書中提出「基因」概念,以此來替代孟德爾假定的「遺傳因子」。從此,「基因」一詞一直伴隨著遺傳學發展至今。詹森還提出了「基因型」與「表現型」這兩個含義不同的術語,初步闡明了基因與性狀的關係。不過此時的基因仍然是一個未經證實的,僅靠邏輯推理得出的概念。
[編輯] 基因結構和功能的探索
自1900年孟德爾定律重新發現後,「基因怎樣控制性狀」的問題引起了許多遺傳學家的濃厚興趣。經過他們的努力,又出現了一批重要成果。
美國實驗胚胎學家、遺傳學家摩爾根(Thomas Hunt Morgan 1866~1945)和他的學生們於1908年前後開始利用果蠅作了大量的潛心研究。他在1910年通過果蠅眼色突變性狀的遺傳實驗發現了伴性遺傳現象,第一次揭示出一種或多種遺傳特性與某一特定染色體的明確聯繫;他和他的同事們進一步通過大量的果蠅雜交實驗又發現了遺傳學的第三個基本規律——連鎖互換規律,從而繼承和發展了孟德爾的遺傳學說。他們為遺傳染色體學說最終提供了更充分、直接、可靠的證據,並認為染色體是盂德爾式遺傳性狀傳遞機理的物質基礎。1926年他的巨著《基因論》出版,從而建立了著名的基因學說,他還繪製了著名的果蠅基因位置圖,首次完成了當時最新的基因概念的描述,即基因以直線形式排列,它決定著一個特定的性狀,而且能發生突變並隨著染色體同源節段的互換而交換,它不僅是決定性狀的功能單位,而且是一個突變單位和交換單位。
摩爾根等人還認為,基因是遺傳的功能單位,它能產生特定的表型效應;基因又是一個獨立的結構單位。在同源染色體之間可以發生基因的互換,但交換隻能發生在基因之間而不是發生在基因之內;基因可以發生突變,由一個等位形式變為另一等位形式,因而基因又是突變單位。這就是20世紀40年代以前流行的所謂「功能、交換、突變」三位一體的基因概念。這種認識把基因與染色體聯繫起來,說明了基因的物質性,基因存在的場所及排列方式,基因從此就不再是一個抽象的概念了。當然這時人們仍然不了解基因的化學本質以及基因是如何控制生物性狀的。
從20世紀40年代起,人們開始注意基因與性狀的關係,即開始研究基因如何控制性狀的問題,1941年,比得爾和塔特姆以紅色鏈抱霉為材料進行生化遺傳研究。他們通過誘變獲得了多種胺基酸和維生素的大量營養缺陷突變體。這些突變基因不能產生某種酶,或只產生有缺陷的酶。例如,有一個突變體不能合成色氨酸是由於它不能產生色氨酸合成酶。於是,研究者提出了「一個基因一種酶」的假說,認為基因對性狀的控制是通過基因控制酶的合成來實現的。這一假說在20世紀50年代得到充分驗證,後來發現有些蛋白質不只由一種肽鏈組成,如血紅蛋白和胰島素,不同肽鏈由不同基因編碼,因而1941年比德爾(G.W. Beadle 1903~)和塔特姆(E.L. Tatum 1909~1975)提出一個基因一個酶學說,證明基因通過它所控制的酶決定著代謝中生化反應步驟,進而決定生物性狀。又提出了「一個基因一條多肽鏈」的假設。「一個基因一種酶」和「一個基因一條多肽鏈」理論的提出,大大促進了分子遺傳學的發展,人們急切期望能搞清楚基因的化學結構。1949年鮑林(L.C.Pauling 1901~1994)與合作者在研究鐮刀型細胞貧血症時推論基因決定著多肽鏈的胺基酸順序,這樣20世紀40年代末至20世紀50年代初,基因是通過控制合成特定蛋白質以控制代謝決定性狀原理變得清晰起來。
雖然DNA在細胞核中很早就被發現,但證明其為遺傳物質的決定性實驗是1944年艾弗里(O.T. Avery 1877~1955)的肺炎雙球菌的轉化實驗。他和麥卡蒂(M.McCarty 1911~)等人發表了關於「轉化因子」的重要論文,首次用實驗明確證實:DNA是遺傳信息的載體。1952年赫爾希(A.D. Hershey)和蔡斯(M.M. Chase 1927~)進一步證明遺傳物質是DNA而不是蛋白質。
這一實驗不僅證明了DNA是遺傳物質,揭示了遺傳物質的化學本質,也大大推動了對核酸的研究。1953年,美國分子生物學家詹姆斯•沃森(J.D. Watson)和英國物理學家佛朗西斯•克里克(F.H.C. Crick)根據威爾金斯(M. Wilkins)和富蘭克林( Rosalind Franklin 1920-1958!)所進行的X射線繞射分析,提出了著名的DNA雙螺旋結構模型,進一步說明基因成分就是DNA,它控制著蛋白質合成。進一步的研究證明,基因就是DNA分子的一個區段。每個基因由成百上千個脫氧核苷酸組成,一個DNA分子可以包含幾個乃至幾千個基因。基因的化學本質和分子結構的確定具有劃時代的意義,它為基因的複製、轉錄、表達和調控等方面的研究奠定了基礎,開創了分子遺傳學的新紀元。
參考: my and my fd
2007-12-04 3:32 am
去氧核糖核酸
Deoxyribonucleic Acid
it carry the genetic information of an organism.
Each DNA molecule has a long thread-like structure.
A DNA molecule coils up around some special proteins to form a chromosome(染色體)
A human body usually has 23 pairs of choromsome.
2007-12-04 3:30 am
請看這網址:
http://zh.wikipedia.org/wiki/%E8%84%B1%E6%B0%A7%E6%A0%B8%E7%B3%96%E6%A0%B8%E9%85%B8

第一次引錄自WIKIPEDIA,不過相信這幫到你......

脫氧核糖核酸(DeoxyriboNucleic Acid)又稱去氧核糖核酸,是一種分子,可組成遺傳指令,以引導生物發育與生命機能運作。主要功能是長期性的資訊儲存,可比喻為「藍圖」或「食譜」[1]。其中所包含的指令,是建構細胞中其他的化合物,如蛋白質與RNA所需。帶有遺傳訊息的DNA片段稱為基因,其他的DNA序列,有些直接以自身構造發揮作用,有些則參與調控遺傳訊息的表現。

DNA是一種長鏈聚合物,組成單位稱為核苷酸。長鏈骨架是由糖類與磷酸分子組成,兩者之間以酯鍵相連。每個糖分子都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鍊所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如構成核糖體的rRNA、進行基因剪接作用的snRNA,或是參與RNA干擾的siRNA。

在細胞內,DNA能組織成一種稱為染色體的結構,而細胞中的整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的類核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。

......(續)

請看這網址:
http://zh.wikipedia.org/wiki/%E8%84%B1%E6%B0%A7%E6%A0%B8%E7%B3%96%E6%A0%B8%E9%85%B8

第一次抄WIKIPEDIA,不過相信這幫到你...

2007-12-06 14:06:10 補充:
Copier without editing.
2007-12-04 3:29 am
脱氧核糖核酸(英语:Deoxyribonucleic acid,縮寫為DNA)又稱去氧核糖核酸,是一種分子,可組成遺傳指令,以引導生物發育與生命機能運作。主要功能是長期性的資訊儲存,可比喻為「藍圖」或「食譜」[1]。其中所包含的指令,是建構細胞中其他的化合物,如蛋白質與RNA所需。帶有遺傳訊息的DNA片段稱為基因,其他的DNA序列,有些直接以自身構造發揮作用,有些則參與調控遺傳訊息的表現。

DNA是一種長鏈聚合物,組成單位稱為核苷酸。長鏈骨架是由糖類與磷酸分子組成,兩者之間以酯鍵相連。每個糖分子都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鍊所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如構成核糖體的rRNA、進行基因剪接作用的snRNA,或是參與RNA干擾的siRNA。

在細胞內,DNA能組織成一種稱為染色體的結構,而細胞中的整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的類核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。
參考: 我
2007-12-04 3:28 am
基因............................
2007-12-04 3:27 am
脫氧核糖核酸


一小段DNA雙股螺旋。

一小段DNA分子填充模型。
脱氧核糖核酸(英語:Deoxyribonucleic acid,縮寫為DNA)又稱去氧核糖核酸,是一種分子,可組成遺傳指令,以引導生物發育與生命機能運作。主要功能是長期性的資訊儲存,可比喻為「藍圖」或「食譜」。其中所包含的指令,是建構細胞中其他的化合物,如蛋白質與RNA所需。帶有遺傳訊息的DNA片段稱為基因,其他的DNA序列,有些直接以自身構造發揮作用,有些則參與調控遺傳訊息的表現。

DNA是一種長鏈聚合物,組成單位稱為核苷酸。長鏈骨架是由糖類與磷酸分子組成,兩者之間以酯鍵相連。每個糖分子都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鍊所排列而成的序列,可組成遺傳密碼,是蛋白質胺基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如構成核糖體的rRNA、進行基因剪接作用的snRNA,或是參與RNA干擾的siRNA。

在細胞內,DNA能組織成一種稱為染色體的結構,而細胞中的整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的類核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。


收錄日期: 2021-04-13 14:38:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071203000051KK02904

檢視 Wayback Machine 備份