F5 Amaths

2007-12-01 2:25 am
Prove that
sin( nx) sin( x) = cos (n-1) x - cos( x) cos (nx)



thanks a lot for your help!!

回答 (1)

2007-12-01 2:33 am
✔ 最佳答案
sin( nx) sin( x)
=-1/2[cos(n+1)x-cos(n-1)x]
=-1/2[cos( x) cos (nx)-sin( nx) sin( x)-cos(n-1)x]
1/2sin( nx) sin( x)=-1/2[cos( x) cos (nx)-cos(n-1)x]
sin( nx) sin( x)=)=-[cos( x) cos (nx)-cos(n-1)x]
sin( nx) sin( x)=)=cos(n-1)x-cos( x) cos (nx)


收錄日期: 2021-04-25 17:19:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071130000051KK02167

檢視 Wayback Machine 備份