a-maths

2007-11-28 3:16 pm
設A、B、C、D均為銳角。已知tanA=1/5,tanB=1/3,tanC=1/8及tanD=1/7,試証明A+B+C+D=π/4。

回答 (1)

2007-11-28 8:01 pm
✔ 最佳答案
設 θ = A + B 和 α = C + D
如此:
tan θ = tan (A + B)
= (tan A + tan B)/(1 - tan A tan B)
= (1/5 + 1/3)/[1 - (1/5)(1/3)]
= 4/7
tan α = tan (C + D)
= (tan C + tan D)/(1 - tan C tan D)
= (1/8 + 1/7)/[1 - (1/8)(1/7)]
= 3/11
tan (θ + α) = (tan θ + tan α)/(1 - tan θ tan α)
= (4/7 + 3/11)/[1 - (4/7)(3/11)]
= (65/77)/(65/77)
= 1
θ + α = π/4
A + B + C + D = π/4
參考: My Maths knowledge


收錄日期: 2021-04-23 20:33:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071128000051KK00400

檢視 Wayback Machine 備份