✔ 最佳答案
A curve studied by the Greek mathematician Nicomedes in about 200 BC , also called the conchloid. It is the locus of points a fixed distance away from a line as measured along a line from the focus point. Nicomedes recognized the three distinct forms seen in this family. This curve was a favorite with 17th century mathematicians and could be used to solve the problems of cube duplication, angle trisection, heptagon construction, and other Neusis constrcutions (Johnson 1975).
蚌線可以斜向方式解決三等分角問題 (古代三大作圖難題之一)
尼科梅德斯發現,蚌線可以斜向方式解決三等分角問題,首先,蚌線的定義如下:
圖片參考:
http://steiner.math.nthu.edu.tw/ne01/tjy/euclidean/specialcurve/conchoid(defn).gif
設MN為一直線,O為線外一點。過MN上任一線點P,截取PQ等於給定的固定長度k,則Q的軌跡即是蚌線。
Cartesian equation:
圖片參考:
http://steiner.math.nthu.edu.tw/ne01/tjy/euclidean/specialcurve/c2img1500.gif
Polar equation:
圖片參考:
http://steiner.math.nthu.edu.tw/ne01/tjy/euclidean/specialcurve/c2img1499.gif
請參考網:
http://steiner.math.nthu.edu.tw/ne01/tjy/euclidean/specialcurve/conchoid.htm
希望可以幫到你.