May someone tell me the equation of a conchord?

2007-11-27 11:34 am
conchord 蚌線

回答 (2)

2007-11-28 12:16 am
✔ 最佳答案




A curve studied by the Greek mathematician Nicomedes in about 200 BC , also called the conchloid. It is the locus of points a fixed distance away from a line as measured along a line from the focus point. Nicomedes recognized the three distinct forms seen in this family. This curve was a favorite with 17th century mathematicians and could be used to solve the problems of cube duplication, angle trisection, heptagon construction, and other Neusis constrcutions (Johnson 1975).





蚌線可以斜向方式解決三等分角問題 (古代三大作圖難題之一)

尼科梅德斯發現,蚌線可以斜向方式解決三等分角問題,首先,蚌線的定義如下:

圖片參考:http://steiner.math.nthu.edu.tw/ne01/tjy/euclidean/specialcurve/conchoid(defn).gif


設MN為一直線,O為線外一點。過MN上任一線點P,截取PQ等於給定的固定長度k,則Q的軌跡即是蚌線。






Cartesian equation:

圖片參考:http://steiner.math.nthu.edu.tw/ne01/tjy/euclidean/specialcurve/c2img1500.gif


Polar equation:

圖片參考:http://steiner.math.nthu.edu.tw/ne01/tjy/euclidean/specialcurve/c2img1499.gif








請參考網:
http://steiner.math.nthu.edu.tw/ne01/tjy/euclidean/specialcurve/conchoid.htm






希望可以幫到你.
2007-12-06 6:23 pm
請參考網:
http://steiner.math. nthu.edu.tw/ne01/tjy /euclidean/specialcu rve/conchoid.htm




希望可以幫到你.


收錄日期: 2021-04-13 14:35:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071127000051KK00369

檢視 Wayback Machine 備份