✔ 最佳答案
1) 3x^2+5x+3
= 3(x^2 + 5x/3 ) + 3
= 3(x^2+5x/3+25/36) + 3 - 3(25/36)
= 3 ( x + 5 / 6 )^2 + 11 / 12 > 0 [ Completing square ]
So 3x^2+5x+3>0 for all real value of x.
2a) y = ax^2 + bx + 8
= a ( x^2 + bx / a + b^2 / 4a^2 ) + 8 - a ( b^2 / 4a^2 )
= a ( x + b / 2a )^2 + 8 - b^2 / 4a
So,
-b / 2a = -2
b = 4a --- ( 1 )
8 - b^2 / 4a = -4
b^2 / 4a = 12 --- ( 2 )
Put ( 1 ) into ( 2 ),
( 4a )^2 / 4a = 12
4a = 12
a = 3
Put a = 3 into ( 1 ),
b = 4 ( 3 ) = 12
So a = 3, b = 12.
3) Let the two parts be x cm and ( 8 - x ) cm and so the length of each side of the squares are x / 4 cm and ( 8 - x ) / 4 cm respectively.
A = ( x / 4 )^2 + ( 8 - x )^2 / 16
= x^2 / 16 + ( 8 - x )^2 / 16
= ( x^2 + 64 - 16x + x^2 ) / 16
= ( 2x^2 - 16x + 64 ) / 16
= ( x^2 - 8x + 32 ) / 8
= [( x^2 - 8x + 16 ) + 16 ] / 8
= [ ( x - 4 )^2 + 16 ] / 8
So x = 4 when A is a min.
Hence each side of the squares:
4 / 4 = 1cm
and
( 8 - 4 ) / 4 = 1cm