簡單概率一問~

2007-11-25 12:02 am
1. 黃太有三個兒子和二個女兒,李太有二個兒子和三個女兒。若從每個家庭中隨意抽出一個孩子,問抽得一個男孩和一個女孩的概率是多少?

2. 從整數1至100中隨意抽出一個數,求下列事件的概率。

(a) 該數能被5整除,已知該數是奇數。

(b) 該數能被10整除,已知該數是4的倍數。

回答 (3)

2007-11-25 12:10 am
✔ 最佳答案
1. 3/5 X 2/5 = 6/25

2a.能被5整除的奇數只有5,15,25...
10/100=1/10

2b.能被10整除的4的倍數只能20,40,60..
5/100=1/20
2007-11-26 10:39 pm
Pay very special attention to Question 2 !!!


1) P(pick 1 boy and 1 girl)

= P(pick boy from Mr. Wong and pick girl from Mr. Lee) + P(pick girl from Mr. Wong and pick boy from Mr. Lee)

= 3/5 X 3/5 + 2/5 X 2/5

= 13/25



For question 2, it is conditional probability!!! Both previous answer has committed a very serious error.

Please note that:

(a) P(該數能被5整除,已知該數是奇數) is NOT equal to P(該數能被5整除 AND 該數是奇數)

(b) P(該數能被10整除,已知該數是4的倍數) is NOT equal to P(該數能被10整除 AND 該數是4的倍數)



(a)

~ 已知該數是奇數: so possible outcome are 1, 3, 5, 7... there is only 50 possible outcome (so 分母 is 50, NOT 100).

~ 該數能被5整除: WITHIN those 50 choices, possible outcome are 5, 15, 25, ... there are 10 favourable outcome

Therefore, P(該數能被5整除,已知該數是奇數) = 10/50 = 1/5


(b)

Similarly,

~ 已知該數是4的倍數: so possible outcome are 4, 8, 12, 16... there is only 25 possible outcome (so 分母 is 25, NOT 100).

~ 該數能被10整除: WITHIN those 25 choices, possible outcome are 20, 40, 60, ... there are 5 favourable outcome

Therefore, P(該數能被10整除,已知該數是4的倍數) = 5/25 = 1/5

2007-12-10 10:23:06 補充:
wrong answer... sorry
參考: be careful!
2007-11-25 12:12 am
1) P(一個男孩和一個女孩)
= 黃太三個兒子 X 李太三個女兒 + 黃太二個女兒 X 李太二個兒子
= 3/5 X 3/5 + 2/5 X 2/5
= 13/25

2) (a)
P ( 該數能被5整除,已知該數是奇數 )
= 該數能被5整除 X 該數是奇數
= 20/100 X 50/100
= 1/10

2) (b)
P (該數能被10整除,已知該數是4的倍數)
= 該數能被10整除 X 該數是4的倍數
= 10/100 X 25/100
= 1/10 X 1/4
= 1/40

2007-11-24 16:15:34 補充:
第一條一定唔係上面果位人兄既答案因為要計黃太既兒子 李太既女兒 = 一個男孩和一個女孩AND黃太既女兒 李太既兒子 = 一個男孩和一個女孩

2007-11-24 16:16:24 補充:
無晒 d /加/ 號 ..第一條一定唔係上面果位人兄既答案因為要計黃太既兒子 加 李太既女兒 = 一個男孩和一個女孩AND黃太既女兒 加 李太既兒子 = 一個男孩和一個女孩


收錄日期: 2021-04-14 00:28:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071124000051KK02605

檢視 Wayback Machine 備份