amath問題!

2007-11-22 5:49 am
Prove the identity
1-sec〔(π/2)-θ〕-cot(2π-θ)....................cotθ
------------------------------------------ = ---------------
1+sec〔(3π/2)+θ〕+cot(π-θ)............1+cosecθ


(-----------是除線)(.........是為左隔開cotθ和1+cosecθ)

唔該各位高手!

回答 (2)

2007-11-22 5:55 am
✔ 最佳答案
I have answered this question before:
http://hk.knowledge.yahoo.com/question/?qid=7007101502191
(1) L.H.S. = [1–sec(π/2–θ)–cot (2π-θ)]/[1+sec(3π/2+θ)+cot(π-θ)]
=(1-cscθ+cotθ)/(1+cscθ-cotθ)
=(1-cscθ+cotθ)(1+cscθ+cotθ)/(1+cscθ-cotθ)(1+cscθ+cotθ)
=[(1+cotθ)2-csc2θ]/[(1+cscθ)2-cot2θ] [Since 1+cot2θ=csc2θ]
=[(1+cotθ)2- (1+cot2θ)]/(1+2cscθ+csc2θ-csc2θ+1)
=(1+2cotθ+cot2θ-cot2θ-1)/2(cscθ+1)
= cotθ/ ( 1 + cscθ)
=R.H.S.
參考: My Maths Knowledge
2007-11-26 6:37 am
[1–sec(π/2–θ)–cot (2π-θ)]/[1+sec(3π/2+θ)+cot(π-θ)]=cotθ/(1+cosecθ)


收錄日期: 2021-04-13 14:32:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071121000051KK04028

檢視 Wayback Machine 備份