✔ 最佳答案
A^2 - B^2 = (A+B)(A-B) where A=2001, B=2000
Given A-B=1
Than
A^2-B^2 = (A+B) *1 = A+B
Hence,
2004^2-2003^2 = 2003+2004 = 2007
It also can proof that
If A-B = 2
=> A^2 - B^2 = 2 (A+B)
.......etc........
2007-11-21 09:43:23 補充:
It should be proof thatA^2 - B^2 = AB - B^2 + AAns.A^2 - B^2 = (A+B) (A-B) = A^2 - AB + AB - B^2 rearrange= AB - B^2 +A^2 - AB = AB - B^2 + A (A-B) Given 2001-2000 = 1Hence A-B =1 = AB - B^2 + A For every A-B =1A^2 - B^2 = AB - B^2 + A
2007-11-21 09:43:33 補充:
It should be proof thatA^2 - B^2 = AB - B^2 + AAns.A^2 - B^2 = (A+B) (A-B) = A^2 - AB + AB - B^2 rearrange= AB - B^2 +A^2 - AB = AB - B^2 + A (A-B) Given 2001-2000 = 1Hence A-B =1 = AB - B^2 + A For every A-B =1A^2 - B^2 = AB - B^2 + A
2007-11-21 09:43:38 補充:
It should be proof thatA^2 - B^2 = AB - B^2 + AAns.A^2 - B^2 = (A+B) (A-B) = A^2 - AB + AB - B^2 rearrange= AB - B^2 +A^2 - AB = AB - B^2 + A (A-B) Given 2001-2000 = 1Hence A-B =1 = AB - B^2 + A For every A-B =1A^2 - B^2 = AB - B^2 + A