MATH 又係probility

2007-11-13 11:10 pm
There are four pairs of black socks and four pairs of white socks in a drawer.A sock is drawn from the drawer at random each time without replacement.
(A)If two socks are drawn , what is the probability that they are in same colour?我識做..

但b..
at least how many socks should be drawn to ensure that there is a pair of socks in the same colour..答案係3..唔識做= =

仲有,唔知點解有時
p(a)+p(b)-p(a and b)
有時要-p(a and b)呢個野.why?有冇d例子比我..

唔該唔好打一大堆英文.我要中文+英文解釋比我知..thx

回答 (2)

2007-11-13 11:48 pm
✔ 最佳答案
想問問part (a) 的答案先??
part (b) 的答案應該係 1 over ans. of part (a). 應該係 2點幾.
咁part (b) 答案就係 3. 因為要整數.

至於 P(a and b) = P(a)*P(b) , iff they are independent. 所以要事件係 indepentend先用到.

For example:

1. 第一次擲骰要係 6, 第二次都要係 6. 因為第一次擲骰後唔會影響第二次擲, 所以 independent.

2. 第一次擲骰要係 6, 第二次加埋第一次的總和要係 8, 因為第一次擲骰後會影響總和, 所以dependent.

3. If two cards are drawn with replacement from a deck of cards, the event of drawing a red card on the first trial and that of drawing a red card on the second trial are independent.

4. By contrast, if two cards are drawn without replacement from a deck of cards, the event of drawing a red card on the first trial and that of drawing a red card on the second trial are dependent.
2007-11-14 1:32 am
Part A你識既我就唔慢慢講了,但B part無理由唔識架= = ? Nevermind , 我解釋一次‧

你宜家要每次抽一隻sock而唔會放番落個袋度 :
假如第一隻抽中黑色,而第二隻又抽中黑色 => p(B) x p(B) = 4/8 x 3/7 = 12/56
又假如第一隻抽中白色,而第二隻又抽中白色 => p(W) x p(W) = 4/8 x 3/7 = 12/56
由於12/56 + 12/56 = 24/56細過 1(概率=1即是100%機會中),所以抽兩次未必一定抽得中兩隻都是同色‧

你試諗下,如果你抽頭兩隻都係唔同色,咁抽第三假一隻會同其中一隻色一樣啦~因為你得兩隻色(黑同白),假如我先抽黑再抽白,第三隻無論抽到黑定白都有同色的兩隻socks

理論就係咁,至於用數學方式計都未嘗不可 :

B = 黑色,W =白色
B+W+B => p(B) x p(W) x p(B) = 4/8 x 4/7 x 3/6 = 1/7
B+W+W => p(B) x p(W) x p(W) = 4/8 x 4/7 x 3/6 = 1/7
W+B+B => p(W) x p(B) x p(B) = 4/8 x 4/7 x 3/6 = 1/7
W+B+W => p(W) x p(B) x p(W) = 4/8 x 4/7 x 3/6 = 1/7
W+W+任何色 => p(W) x p(W) x p(any) = 4/8 x 3/7 x 1 = 3/14
B+B+任何色 => p(B) x p(B) x p(any) = 4/8 x 3/7 x 1 = 3/14
點解要計埋W+W+any同B+B+any呢 ? 因為都係要抽三次,所以要計埋,之不過呢兩種抽法係第二次已經抽中‧
將以上既所有數加埋 : 1/7 x 4 + 3/14 x 2 = 7/7 即係 1
由於概率等於 1 ,所以抽三次係100%命中‧


收錄日期: 2021-04-13 14:29:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071113000051KK01506

檢視 Wayback Machine 備份