三角函數的極限問題!

2007-11-13 6:56 pm
這是網友問的題目,我也不會.
恭迎 飛天大將軍張遼
幫忙解惑,謝謝!

原題目如下,沒有做任何更動.

limx→∞ (SIN(X+1)^1/2 - SINX^1/2 )

因為無法幫版主解惑,自覺愧對版主.

回答 (2)

2007-11-13 8:04 pm
✔ 最佳答案
lim (x→∞) [sin√(x+1) - sin√x]
= 2 lim (x→∞) sin{[√(x+1) - √x]/2} cos √{[(x+1) + √x]/2}
= 2 lim (x→∞) sin{[√(x+1) - √x][√(x+1) + √x]/2[√(x+1) + √x]} cos √{[(x+1) + √x]/2}
= 2 lim (x→∞) sin{1/2[√(x+1) + √x]} cos √{[(x+1) + √x]/2}

觀察:

lim (x→∞) sin{1/2[√(x+1) + √x]}
= sin{lim (x→∞) 1/2[√(x+1) + √x]}
= sin 0
= 0

-1 ≦ cos √{[(x+1) + √x]/2} ≦ 1

利用壓迫定理,

2 lim (x→∞) sin{1/2[√(x+1) + √x]} cos √{[(x+1) + √x]/2} = 0

lim (x→∞) [sin√(x+1) - sin√x] = 0

2007-11-13 12:27:11 補充:
第十行出了亂碼, 應該是:

-1 <= cos √{[(x+1) + √x]/2} <= 1
參考: My Maths knowledge
2007-11-13 7:35 pm
sin((x+1)^0.5)-sin(x^0.5)
=2 sin(0.5*((x+1)^0.5-x^0.5)) * cos(0.5*((x+1)^0.5+x^0.5))

limx->inf [(x+1)^0.5-x^0.5] = 0
cos is a finite valued function

so limx→∞ (SIN(X+1)^1/2 - SINX^1/2 ) = 0


收錄日期: 2021-04-12 10:59:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071113000016KK02831

檢視 Wayback Machine 備份