geometric sequence

2007-11-12 11:24 pm
The sum to infinite geometric sequence is 16 and the sum to infinity of the squares of its terms is 768/5. Find the common ratio and the fourth term of the sequence.

回答 (1)

2007-11-12 11:33 pm
✔ 最佳答案
S(infinity)=a/(1-r)= 16__________(1)

T(1)^2+T(2)^2+...+T(infinity)^2
=(a)^2+(ar)^2+....+[ar^(n-1)]^2+.....
=a^2+a^2r^2+....+a^2r^(2n-2)+.....
=a^2/(1-r^2)
=768/5____________ (2)

(1)^2, we have:
a^2/(1-r)^2=256_______________ (3)

(3)/(2), we have:
(1-r^2)/(1-r)^2=5/3
(1+r)(1-r)/(1-r)^2=5/3
(1+r)/(1-r)=5/3 [where (1-r) not = 0]
3(1+r)=5(1-r)
3+3r=5-5r
8r=2
r=1/4


收錄日期: 2021-04-25 16:53:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071112000051KK01545

檢視 Wayback Machine 備份