中四數學 - 不等式 (急)

2007-11-11 10:38 pm
設f(x)=4x^2 + ax - b 及 g(x) = 4x^2 + bx - a,其中 a不等於b,α、β是方程 f(x) = 0 的根,α、γ是方程 g(x) = 0 的根。
(a) 根據 f(α) = 0 及 g(α) = 0,求 α 的值。
由此證明 a + b = 4。
(b) 試以 a 表 β 和 γ。
(c) 若 a、b 為正數且 β > γ,試求 a 和 b 的值。
並由此求 β 和 γ的值。


*** 請列式 ***

回答 (2)

2007-11-12 1:11 am
✔ 最佳答案
As α is the root of f(x), so f(α) = 0
f(α) = 0
4α2 + aα - b = 0 ..... (1)
As α is the root of g(x), so g(α) = 0
g(α) = 0
4α2 + bα - a = 0 ..... (2)
Consider (1) - (2),
4α2 + aα - b - (4α2 + bα) - a) = 0 + 0
α(a-b) + (a-b) = 0
(α+1)(a-b) = 0
α+1 = 0 【As a≠b】
α = -1
Consider (1) + (2),
4α2 + aα - b + (4α2 + bα) - a) = 0 + 0
8α2 + (a+b)α - (a+b) = 0
8(-1)2 + (a+b)(-1) - (a+b) = 0
8 - 2(a+b) = 0
a+b = 4

==================== ==================== =====
(b) express β and γ in terms of a.
For f(x) = 0,
Sum of roots = -a/4
α + β = -a/4
β = -a/4 - α
β = -a/4 - (-1) 【From (a)】
β = -a/4 + 1 ..... (3)
For g(x) = 0,
Product of roots = -a/4
αγ = -a/4
(-1)γ = -a/4 【From (a)】
γ = a/4 ...... (4)

==================== ==================== =====
(c) if a and b are positive integers and β > γ, find the values of a,b, β and γ.

As a and b both are positive integers, and a + b = 4.

So the possibilities are

a = 1, b = 3
a = 2, b = 2
a = 3, b = 1

Since β > rr,
From (b),
-a/4 + 1 > a/4
1 > a/2
a < 2
So the only integer of a is 1, and so b = 3.
When a = 1,
β = -1/4 + 1 = 3/4
γ = 1/4 = 1/4
So a = 1, b = 3, β = 3/4, γ = 1/4
2007-11-13 1:26 am
好好


收錄日期: 2021-04-13 14:25:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071111000051KK02223

檢視 Wayback Machine 備份