Show that 1^3 + 2^3 + + ... + n^3 = [n(n+1)/2]^2 Whenever n is a positive integer.
=[k(k+1)/2]^2 + (k+1)^3
=[k(k+1)/2]^2 + (k+1)(k+1)^2
做到咁就唔識做了
更新1:
原來係咁.......我唔可以問多D架....... or,....我add你...得唔得呀??? 因為真係好似好多唔識
更新2:
你起碼叻過我呀......=.=