中四符加數(聯立二元二次方程:一為線性方程和一為二次方程)

2007-11-09 2:26 am

1)
(a)證明函數f(x)=(a-x)(x-b)的極大值為(1/4)(a-b)^2。
b) 已知二次方程為(a-x)(x-b)=k﹐且0<b<a。
&n bsp;(i)若方程有相等的根﹐試以a和b表示k的值。
(ii)若方程的兩根的數值是在b和a之間﹐試求k值的範圍。
2)考慮直線x+y+k=0和曲線y=x^2+2x+k﹐其中k是常數。
a)求證直線與曲線的交點的x坐標滿足下列方程:
x^2+3x+2k=0
b) 苦直線與曲線相切﹐求
(i)k的值
(ii)直線與曲線相切的切點坐標。

回答 (1)

2007-11-10 8:37 pm
✔ 最佳答案
1a) f(x) = (a - x)(x - b)
= -x2 + (a + b)x - ab
f'(x) = -2x + a + b
For turning points, f'(x) = 0
x = (a + b)/2
Since f''(x) = -2 < 0
f' [(a + b)/2] is a maximum.
Maximum f(x)
= f [(a + b) / 2]
= -(a + b)2 /4 + (a + b)2 /2 - ab
= [(a + b)2 - 4ab]/4
= (a - b)2 /4
bi) (a - x)(x - b) = k
f(x) = k ... (*)
Given (*) has a double root.
By (a), the f(x) has a maximum value (a - b)2 /4.
Therefore, the graph y = f(x) and y = (a - b)2 /4 intersect at one point only.
Hence k = (a - b)2 /4
ii) Given f(x) = k has two roots with b and a.
Therefore, the graph of y = f(x) and y = k should intersect at two points.
As the graph opens downwards, k < (a - b)2 /4
Since a and b are the roots of f(x) = 0,x
k > 0 (the grpah opens downwards)
Therefore, 0 < k < (a - b)2 /4
2a) For the points of intersection, the x-coorinates satisfy both of the equations.
Substitute the eqaution of the curve into that of the straight line,
x2 + 3x + 2k = 0 ... (#)
bi) If the straight line touches the curve, discriminent of (#) = 0
32 - 4(2k) = 0
k = 9/8
ii) Substitute k = 9/8 into (#),
4x2 + 12x + 9 = 0
(2x + 3) = 0
x = -3/2
So (-3/2) + y + 9/8 = 0
y = 3/8
The coordiates of the point of intersection are (-3/2 , 3/8)


收錄日期: 2021-04-13 14:22:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071108000051KK02505

檢視 Wayback Machine 備份