數學測驗勁難題.......help下me...........

2007-11-07 8:58 pm
比個詳盡過程我....唔該

a(2次方) + b(2次方) + c(2次方) + 42 < ab + 9b + 8c

help help 我.....唔該哂............
更新1:

什麼也看不懂......我肯定是42...

更新2:

sor.....唔記得左打個問........係求a、b、c的值..........sor哇....

回答 (2)

2007-11-08 1:08 am
✔ 最佳答案
consider
(a-b/2)^2 = a^2-ab+b^2/4 -----(1)
3(b/2-3)^2 = 3b^2/4-9b+27 ----(2)
(c-4)^2 =c^2 -8c +16 -----(3)
(1)+(2)+(3), we have
(a-b/2)^2+3(b/2-3)^2+(c-4)^2=a^2+b^2+c^2+43 -ab -9b -8c
ab+9b+8c = a^2+b^2+c^2 +43 -(red part>=0)
ab+9b+8c>a^2+b^2+c^2+43
are you sure the integer is 42 not 43, please reply me
(to be continued)




2007-11-07 19:18:48 補充:
since 43 42, thenab 9b 8c>a^2 b^2 c^2 43 a^2 b^2 c^2 42

2007-11-07 19:20:23 補充:
since 43>42, thenab+9b+8c>a^2+b^2+c^2+43>a^2+b^2+c^2+42

2007-11-07 19:21:21 補充:
hope I can help you!

2007-11-07 22:16:21 補充:
sorry I just made a mistake in hurryab+9b+8c= a^2+b^2+c^2+43-(red part>=0)thereforeab+9b+8c<=a^2+b^2+c^2+43

2007-11-07 22:16:34 補充:
your inequality is not true, you can just by putting a,b andc equal to 1, then you will find you inequality cannot hold. Therefore, I believe you make mistakes(also including writing 42 instead of 43).

2007-11-12 00:09:05 補充:
因為ab+9b+8c = a^2+b^2+c^2 +43 -(a-b/2)^2+3(b/2-3)^2+(c-4)^2所以,若要ab+9b+8c>a^2+b^2+42的話那麼red part就必須等於0所以c-4=0, b/2-3=0, a-b/2=0所以 c=4, b=6, a=3
2007-11-12 4:25 am
(a-b/2)^2 = a^2-ab+b^2/4 -----(1)

3(b/2-3)^2 = 3b^2/4-9b+27 ----(2)

(c-4)^2 =c^2 -8c +16 -----(3)

(1)+(2)+(3), we have

(a-b/2)^2+3(b/2-3)^2+(c-4)^2=a^2+b^2+c^2+43 -ab -9b -8c

ab+9b+8c = a^2+b^2+c^2 +43 -(red part>=0)

ab+9b+8c>a^2+b^2+c^2+43

are you sure the integer is 42 not 43, please reply me


收錄日期: 2021-04-18 23:45:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071107000051KK01112

檢視 Wayback Machine 備份