Inequality~有心解答的人請進

2007-11-07 4:45 am
I hope someone can help me

a,b,c,A,B,C are real numbers such that a ≠ 0 , A≠0
It is given that |ax^2+bx+c| ≤|Ax^2+Bx+C| for all real number x
prove that |b^2-4ac|≤|B^2-4AC|

Great thanks to the one who can help me to solve the problem.
更新1:

I want to know why can you simipify it to |Ax^2+Bx+C|≥|x^2+d| =〉|B^2-4AC|≥|4d|, where B≥0

回答 (1)

2007-11-09 8:55 am
✔ 最佳答案
砌好真係好有成就感。

圖片參考:http://i187.photobucket.com/albums/x22/cshung/7007110603489.jpg
參考: 從不抄襲。


收錄日期: 2021-04-23 17:22:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071106000051KK03489

檢視 Wayback Machine 備份