✔ 最佳答案
1. Let P(n) be the proposition that
1+2+3+.....+n=1/2(n)(n+1)
P(1): L.H.S. = 1
R.H.S. = 1/2(1)(1+1) = 1
Therefore, P(1) is true.
Assume P(k) is true for some integer k
i.e. 1+2+3+.....+k=1/2(k)(k+1)
P(k+1) : 1+2+3+.....+k+(k+1)
=1/2(k)(k+1)+(k+1)
=(k^2 + 3k + 2) / 2
= (k+1)(k+2) / (2)
Therefore, P(k+1) is true.
By Mathematics Induction,
P(n) is true for all positive integers n.
2a)
Let P(n) be the proposition that
2(2)+3(2^2)+4(2^3)+........+(n+1) (2^n)=n(2^(n+1))
P(1) : L.H.S. = 4
R.H.S. = 1(2^1+1) = 4
Therefore,P(1) is true
Assume P(k) is true for some integer k
i.e. 2(2)+3(2^2)+4(2^3)+...+(k+1) (2^k)=k(2^(k+1))
P(k+1) : 2(2)+3(2^2)+4(2^3)+...+(k+1) (2^k)+(k+2)(2^(k+1))
=k(2^(k+1)) )+(k+2)(2^(k+1))
=2^(k+1)(2k+2)
=(2^(k+2))(k+1)
Therefore, P(k+1) is true.
By Mathematics Induction,
P(n) is true for all positive integers n.
b) Put n=98 into (a)
2(2)+3(2^2)+4(2^3)+........+99 (2^98)=98(2^99)
1(2)+2(2^2)+3(2^3)+.....+98(2^98)
= 98(2^99) - [2(2^(98-1)) / (2-1)]
= 98(2^99) - (2^99 - 2)
=97(2^99) - 2
----------------------------------------------------------END-------------------------------------------------------
For more enquiries,
feel free to add
[email protected] (msn)