A pure Mathematics question

2007-11-01 9:52 am
Let f(x)=(x^n)∣x∣ , where n is a positive integer.
(a) Show , from the first principle , that f'(0) exists and find its value.
(b) Show that f'(x) = (n+1)[x^(n-1)]∣x∣
Hence find ∫(x^n)∣x∣dx

回答 (1)

2007-11-01 5:01 pm
✔ 最佳答案
(a)
lim (x^n|x| - 0)/(x - 0) = lim x^(n+1)/x = 0
x->0+

lim (x^n|x| - 0)/(x - 0) = lim -x^(n+1)/x = 0
x-> 0-

So f'(0) exist

(b) When x > 0
f'(x) = (n+1)x^n = (n+1)x^(n-1)*x
When x < 0
f'(x) = -(n+ 1) x^n = (n+1)x^(n-1)*(-x)
combining the results, we have f'(x) = (n+1)x^(n-1)*|x|

Let g(x) = x^(n+1) |x|, g'(x) = (n+2) x^n |x|
So ∫(x^n)∣x∣dx = x^(n+1) |x/(n+2) + constant


收錄日期: 2021-04-13 19:31:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071101000051KK00287

檢視 Wayback Machine 備份