A question of indefinite integrals---(1)
Only one question , thanks
∫ [ 1 / ( x ² + 4 ) ^ ( 3 / 2 ) ] ( d x )
回答 (3)
Both answers are correct!
given x = 2 tan (theta)
∫ [ 1 / ( x ² + 4 ) ^ ( 3 / 2 ) ] ( d x )
= 1/4 * sin (theta) + C
= 1/4 * (1 + tan²(theta) ) ^ (-1/2)
= 1/4 * (1 + x² / 4) ^ (-1/2)
= 1/4 * 2 * (4 + x²) (-1/2)
= (1/2) ( x ² + 4 ) ^ (- 1 / 2 ) + C
參考: me
為方便睇..我將 1 / x = x ^ (-1)....係相等的
1 / ( x ² + 4 ) ^ ( 3 / 2 ) = ( x ² + 4 ) ^ (- 3 / 2 )
∫ [( x ² + 4 ) ^ (- 3 / 2 )] (dx)
=∫ [( x ² + 4 ) ^ (- 3 / 2 )] [( 1 / 2) d ( x ² + 4 ) ]
= (1 / 2)∫ [( x ² + 4 ) ^ (- 3 / 2 )] d ( x ² + 4 )
= {(1 / 2) [( x ² + 4 ) ^ (- 1 / 2 )]} (- 1 / 2)................
= - ( x ² + 4 ) ^ (- 1 / 2 )...
2007-10-31 00:28:50 補充:
加 constantans : - ( x ² + 4 ) ^ (- 1 / 2 ) + c
參考: me .....& ...marking
收錄日期: 2021-05-03 12:26:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071031000051KK00058
檢視 Wayback Machine 備份