(40) A.maths (Binomial Theorem) (2)

2007-10-30 6:41 am

Qs 22 only.
If you can't see the pict. clearly, you can go to http://x0f.xanga.com/239c36f100532154699603/m115723683.jpg
Thanks for your help...

回答 (2)

2007-10-30 6:51 am
✔ 最佳答案
is the question" 1/(n!) - 1/[(n+1)!]?

if yes,
1/(n!) - 1/[(n+1)!]?
= (n+1)/(n!)(n+1) - 1/[(n+1)!]
=(n+1)/[(n+1)!] - 1/[(n+1)!]
=(n+1-1)/[(n+1)!]
=n/[(n+1)!]

is it correct??i hope my answer can help you.
2007-10-30 6:50 am
1/n!﹣1/(n+1)!
= 1/n!﹣1/(n+1)n!
= (n+1)/(n+1)n!﹣1/(n+1)n!
= [(n+1)﹣1]/(n+1)n!
= (n+1﹣1)/(n+1)n!
= n/(n+1)n!

2007-10-29 22:54:31 補充:
最簡答案應該是= n/(n+1)n!= n/(n+1)n(n﹣1)!= 1/(n+1)(n﹣1)!


收錄日期: 2021-04-25 00:27:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071029000051KK04522

檢視 Wayback Machine 備份