F.4 附加數學 - 絕對值 (高手請進)

2007-10-29 3:54 am
1. |x^2 + x - 13|= 7

2. 2|x - 4|= |7 - 3x|
更新1:

解下列方程

回答 (2)

2007-10-29 4:04 am
✔ 最佳答案

|x2 + x - 13|= 7
x2 + x - 13 = 7 or x2 + x - 13 = -7
x2 + x - 20 = 0 or x2 + x - 6 = 0
x= -5, -3, 2, 4



2|x - 4|= |7 - 3x|
4(x-4)2 = (7-3x) 2
4x2-32x+64 = 9x2-42x+49
5x2-10x-15=0
x2-2x-3=0
x=3 or -1
2007-10-30 1:43 am
1. |x^2 + x - 13| = 7
Case 1: x^2 + x - 13 = 7
=> x^2 + x - 20 = 0
=> (x + 5)(x - 4) = 0
=> x + 5 = 0 or x - 4 = 0
=> x = -5 or x = 4

Case 2: -(x^2 + x - 13) = 7
=> x^2 + x - 6 = 0
=> (x - 2)(x + 3) = 0
=> x = 2 or x = -3

In conclusion, for |x^2 + x - 13| = 7, x = -5, -3, 2 or 4.

2. 2|x - 4| = |7 - 3x|
Case 1: 2(x - 4) = (7 - 3x)
=> 5x = 15
=> x = 3

Case 2: 2(x - 4) = -(7 - 3x)
=> x = -1

In conclusion, for 2|x - 4| = |7 - 3x|, x = -1 or 3


收錄日期: 2021-04-25 22:12:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071028000051KK04442

檢視 Wayback Machine 備份