✔ 最佳答案
1. when n = 1 . => 1 = 1 * 2 / 2 = 1
假設當 n = k
1 + 2 + ... + k = k * ( k + 1 ) / 2
當 n = k + 1
=> 1 + 2 + .. + k + k + 1 = k * ( k + 1 ) / 2 + k + 1
= ( k + 1 ) [ ( k / 2 ) + 1 ]
= ( k + 1 ) ( k + 2 ) / 2
由數學歸納法 , 1 + 2 + 3 + ... + n = n * ( n + 1 ) / 2
2. 1 / k ( k + 1 ) = ( 1 / k ) - ( 1 / k + 1 )
當 k = 1 到 n
=> ( 1 / 1 ) - ( 1 / 2 ) + ( 1 / 2 ) - ( 1 / 3 ) + ... + ( 1 / n ) - ( 1 / ( n + 1) )
= 1 - ( 1 / ( n + 1 ) )
= n / ( n + 1 )
3. 當 n = 1 8 - 5 可以被3整除
假設當 n = k . 8^k - 5^k = 3m ( m : 整數 )
當 n = k + 1 =>
8^ ( k + 1 ) - 5^( k + 1 ) = ( 6 + 2 ) * 8^k - ( 3 + 2 ) * 5^k
= ( 6 * 8^k - 3 * 5^k ) + 2 * ( 8^k - 5^k )
= 3n + 2 * 3m 是 3 的倍數
由數學歸納法 8^n - 5^n 能被3整除。
4. 當 n = 1 . 23 - 1 可以被 22 整除
假設當 n = k . 23^k - 1 = 22m ( m : 整數 )
當 n = k + 1
=> 23^( k + 1 ) - 1 = 23 * 23^k - 1
= 22 * 23^k + 23^k - 1
= 22 * 23^k + 22m = 22 ( 23^k + m ) 可以被 22 整除
由數學歸納法,23^n - 1 能被22整除