About the chord of contact and tangent

2007-10-25 10:01 am
Show that the length of the chord of contact of tangents from the point ( - a , a ) to the parabola y²=4ax is 5a , where a > 0
thx~
更新1:

o係而家ge pure maths課程中,仲有冇Joachimsthal's notations? 另外,( - a , a )唔係lies on y²=4ax,都可以用呢條式---yyi = (1/2)4a(x+xi) ?

回答 (1)

2007-10-25 10:42 am
✔ 最佳答案
This question is not difficult if you know Joachimsthal's notations. Otherwise it is quite tedious
Using Joachimsthal's notations, the equation of the chord is
si = 0
yyi = (1/2)4a(x+xi) where (xi,yi)=(-a,a)
ay=2a(x-a)
y=2(x-a)...(1)
Let the contact point of the chord and the parabola is (x1,y1) (x2,y2)
Now from y²=4ax
x=y²/4a
substitute into (1)
y=2(y²/4a -a)
Simplify
y²-2ay-4a²=0
(y1-y2)^2
=(y1+y2)^2-4y1y2
=4a^2+16a^2
=20a^2
To find (x1-x2)^2
Since
y1^2-y2^2=4a(x1-x2)
(y1+y2)(y1-y2)=4a(x1-x2)
(y1+y2)^2(y1-y2)^2=16a^2(x1-x2)^2
(4a^2)(20a^2)=16a^2(x1-x2)^2
(x1-x2)^2=5a^2
The length of the chord of contact of tangents
=√[(x1-x2)^2+(y1-y2)^2]
=√(5a^2+20a^2)
=√(25a^2)
=5a

2007-10-25 02:42:39 補充:
其實這條是不是pure math題?

2007-10-27 06:29:31 補充:
1 pure math 書無講Joachimsthal's notations﹐所以我有點懷疑這條不是pure math。2 yes


收錄日期: 2021-04-25 16:53:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071025000051KK00315

檢視 Wayback Machine 備份