超多數學功課問題???????(20分)

2007-10-23 12:44 am
有少許的步驟便足夠了。(當然要答案la!)

41. (2y+1)+[(2y+1)+3]+[(2y+1)+5]
42. (2y+2)+[(2y+2)+4] +[(2y+4)+6]
43. (y+1)+[(3y+3)+3]+[(5y+5)+5]
44. [(y)(y)+1]+[(y)(y)+3]+[(y)(y)+5]
45. [(2)(y)(y)+2]+[(4)(y)(y)+4]+[(6)(y)(y)+6]
46. [(2)(w)(y)+1]+[(2)(w)(y)+3]
47. [(3)(w)(w)(y)+3]+[(5)(w)(w)(y)+4]
48. [(4)(w)(y)+1]+{[(4)(w)(y)+2]}
49. [(5)(w)(w)(y)+3]+{[(6)(w)(w)(y)+7]+2}
50. (6y-2w+1)+[(3y+9w)+5]
更新1:

{ 大過 [ [ 大過 (

更新2:

睇唔到的話,請用Microsoft Word放大來看。

回答 (4)

2007-10-23 1:13 am
✔ 最佳答案
41)(2y+1)+[(2y+1)+3]+[(2y+1)+5]
=2y+2y+2y+1+1+1+3+5
=6y+11
42)(2y+2)+[(2y+2)+4]+[(2y+4)+6]
=2y+2y+2y+2+2+4+4+6
=6y+18
43)(y+1)+[(3y+3)+3]+[(5y+5)+5]
=y+3y+5y+1+3+3+5+5
=9y+17
44)[(y)(y)+1]+[(y)(y)+3]+[(y)(y)+5]
=y^6+3+1+5
=y^6+9
45)[(2)(y)(y)+2]+[(4)(y)(y)+4]+[(6)(y)(y)+6]
=2y^2+4y^2+6y^2+2+4+6
=12y^2+12
46)[(2)(w)(y)+1]+[(2)(w)(y)+3]
=2wy+2wy+1+3
=4wy+4
47)[(3)(w)(w)(y)+3]+[(5)(w)(w)(y)+4]
=3w^2y+5w^2y+3+4
=8w^2y+7
48)[(4)(w)(y)+1]+{[(4)(w)(y)+2]}
=4wy+4wy+1+2
=8wy+3
49)[(5)(w)(w)(y)+3]+{[(6)(w)(w)(y)+7]+2}
=5wwy+6wwy+3+7+2
=11wwy+12
50)(6y-2w+1)+[(3y+9w)+5]
=6y+3y+9w-2w+1+5
=9y+7w+6
參考: Myself
2007-10-23 1:27 am
應該是這樣:
41.=(2y+1)(1+3+5)
=8(2y+1)

42.=(2y+2)(1+4+2+6)
=13(2y+2)

43.=(y+1)[3(y+1)+3][5(y+1)+5]
=(y+1)(3+5)+7
=8(y+1)+7

44.=(y)(y)(1+3+5)
=9(y)(y)

45.=2{[(y)(y)+1][2(y)(y)+2]+[3(y)(y)+1]}
=2[(y)(y)+1](1+2+3)
=12[(y)(y)+1]

46.=4[(2)(w)(y)]

47.=[(15)(w)(w)(y)]+7

48.=[(4)(w)(y)](1+2)
=[(4)(w)(y)](3)

49.=(30)(w)(w)(y)+12

50.=[2(3y-w)+1]+[3(y+3w)+5]
2007-10-23 1:26 am
41. (2y+1)+[(2y+1)+3]+[(2y+1)+5]
=6y+11
42. (2y+2)+[(2y+2)+4] +[(2y+4)+6]
=6y+18
43. (y+1)+[(3y+3)+3]+[(5y+5)+5]
=9y+17
44. [(y)(y)+1]+[(y)(y)+3]+[(y)(y)+5]
=3y^2+9
45. [(2)(y)(y)+2]+[(4)(y)(y)+4]+[(6)(y)(y)+6]
=12y^2+12
46. [(2)(w)(y)+1]+[(2)(w)(y)+3]
=4wy+4
47. [(3)(w)(w)(y)+3]+[(5)(w)(w)(y)+4]
=8w^2y+7
48. [(4)(w)(y)+1]+{[(4)(w)(y)+2]}
=8wy+3
49. [(5)(w)(w)(y)+3]+{[(6)(w)(w)(y)+7]+2}
50. (6y-2w+1)+[(3y+9w)+5]
=9y+7w+6

2007-10-22 17:29:15 補充:
49.=11w^2y 12

2007-10-22 17:30:31 補充:
49.11w^2y 12 才正確 he! he!
2007-10-23 1:20 am
41. (2y+1)+[(2y+1)+3]+[(2y+1)+5]
=(2y+1)+(2y+1+3)+(2y+1+5)
=2y+1+2y+1+3+2y+1+5
=6y+11

42. (2y+2)+[(2y+2)+4] +[(2y+4)+6]
=2y+2+2y+2+4 +2y+4+6
=6y+18

43. (y+1)+[(3y+3)+3]+[(5y+5)+5]
=y+1+3y+3+3+5y+5+5
=9y+17

44. [(y)(y)+1]+[(y)(y)+3]+[(y)(y)+5]
=y^2+1+y^2+3+y^2+5
=y^2+9

45. [(2)(y)(y)+2]+[(4)(y)(y)+4]+[(6)(y)(y)+6]
= 2y^2+2+4y^2+4+6y^2+6
=12y^2+12

46. [(2)(w)(y)+1]+[(2)(w)(y)+3]
=2wy+1+2wy+3
=4wy+4

47. [(3)(w)(w)(y)+3]+[(5)(w)(w)(y)+4]
=3w^2y+3+5w^2y+4
=8w^2y+7

48. [(4)(w)(y)+1]+{[(4)(w)(y)+2]}
= 4wy+1+4wy+2
=8wy+3

49. [(5)(w)(w)(y)+3]+{[(6)(w)(w)(y)+7]+2}
=5w^2y+3+6w^2y+7+2
=11w^2y+12

50. (6y-2w+1)+[(3y+9w)+5]
= 6y-2w+1+3y+9w+5
=3y+7w+6


收錄日期: 2021-05-03 12:18:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071022000051KK01789

檢視 Wayback Machine 備份