math problem

2007-10-22 9:58 am
verify that y=sinxcosx-cosx is a solution fo the initial-value problem
更新1:

verify that y=sinxcosx-cosx is a solution for the initial-value problem y'=(tan x) y= (cosx)^2 y(0)= -1 on the interval -π/2

更新2:

verify that y=sinxcosx-cosx is a solution for the initial-value problem dy/dx=(tan x) y= (cosx)^2 y(0)= -1 on the interval -π/2

回答 (1)

2007-10-22 1:35 pm
✔ 最佳答案
Verify that y=sinxcosx-cosx is a solution of the initial-value problem
y'+(tanx)y=(cos^2)x y(0)=-1 on the interval -pi/2<x<pi/2
y'=dy/dx=sinx(-sinx)+cosx(cosx)+sinx=cos^2x-sinx^2x+sinx
So
LHS
=y'+(tanx)y
=cos^2x-sinx^2x+sinx+tanx(sinxcosx-cosx)
=cos^2x-sinx^2x+sinx+sin^2x-sinx
=cos^2x
=RHS
Also
y(0)
=sin0*cos0-cos0
=-1
satisfy the condition
We verify that y=sinxcosx-cosx is a solution fo the initial-value problem


收錄日期: 2021-04-26 13:42:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071022000051KK00344

檢視 Wayback Machine 備份