a-maths~~~~~~~

2007-10-22 1:28 am
試求下列隱函數的導數dy/dx。
(a)x=sinx+tan(x+y)
(b)sinxy=cos(x²-y²)

回答 (1)

2007-10-22 3:45 am
✔ 最佳答案
a)x = sin x + tan ( x + y )
1 = cos x + [sec2 ( x + y )]( 1 + dy / dx )
1 = cos x + sec2 ( x + y ) + [sec2 ( x + y )] dy / dx
1 – cos x – sec2 ( x + y ) = [sec2 ( x + y ) ] dy / dx
dy / dx = [1 – cos x – sec2 ( x + y )] / sec2 ( x + y )
b)sin xy = cos ( x² - y² )
(cos xy)[ x ( d / dx ) y + y ( d / dx ) x ] = [- sin ( x² - y² )][d / dx ( x2 ) – d / dx ( y2 )]
( cos xy )[ x ( dy / dx ) + y ] = [- sin ( x² - y² )][ 2x – 2y ( dy / dx )]
x cos xy ( dy / dx ) + y cos xy = [2y sin ( x² - y² )]dy / dx – 2x sin ( x² - y² )
[2y sin ( x² - y² ) – x cos xy] dy / dx = [2x sin ( x² - y² ) + y cos xy]
dy / dx = [2x sin ( x² - y² ) + y cos xy] / [2y sin ( x² - y² ) – x cos xy]
參考: My Maths Knowledge


收錄日期: 2021-04-23 20:43:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071021000051KK03526

檢視 Wayback Machine 備份