question about M.I

2007-10-19 5:34 am
Prove , by mathematical induction , that
1x3+2x3^2+3x3^3+......+n(3^n)=3/4(3^n(2n-1)+1)for all positive integer n .

SP: You only need to do the part about......
Assume S(k) is true ...and below thanks

回答 (2)

2007-10-19 5:44 am
參考: Myself~~~
2007-10-19 5:42 am
Assume S(k) is true,
i.e. 1x3+2x3^2+3x3^3+......+k(3^k)=3/4(3^k(2k-1)+1)

When n=k+1,
1x3+2x3^2+3x3^3+......+k(3^k) + (k+1) * 3^ (k+1)
= 3/4(3^k(2k-1)+1) + (k+1) * 3^ (k+1)
= 3/4[3^k(2k-1)+1 + (k+1) * 3^k * 3 * 4/3 ]
= 3/4[3^k(2k-1)+1 + 4(k+1) * 3^k ]
= 3/4[3^k(2k-1+ 4(k+1)) + 1 ]
= 3/4(3^k(2(k+1)-1)+1)

so S(k+1) is also true

2007-10-18 21:45:41 補充:
sorry, some typing mistake for the last lineit should be ---= 3/4[3^k(6k 3) 1 ]= 3/4[3^(k 1) (2k 1) 1 ]= 3/4[3^(k 1) (2(k 1)-1) 1]


收錄日期: 2021-04-13 20:03:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071018000051KK03545

檢視 Wayback Machine 備份