a-maths~~~~~

2007-10-16 4:36 am
試求函數y=1-2sin²x+4cosx在區間0≤x≤2π的極大值與極小值,並求對應的x值。

回答 (1)

2007-10-16 4:45 am
✔ 最佳答案
y = 1 – 2sin2x + 4cosx

y = 1 – 2(1 – cos2x) + 4cosx

y = 2cos2x + 4cosx – 1

y = 2[cos2x + 2cosx(1) + 12] – 2 – 1

y = 2(cosx + 1)2 – 3

-1 ≦ cosx ≦ 1

So, when cosx = -1

y attains minimum

ymin = 0 – 3 = -3

when cosx = 1

y attains maximum

ymax = 2(1 + 1)2 – 3

= 2(2)2 – 3

= 5
參考: Myself~~~


收錄日期: 2021-04-23 20:34:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071015000051KK03649

檢視 Wayback Machine 備份