Laws of Indices

2007-10-14 8:20 am
(4x^2y)^3(-x^2y^3)^2÷[(2xy)^4(-3x)]
是否等如1/2x^6y^5

回答 (2)

2007-10-15 11:59 pm
✔ 最佳答案
(4x^2y)^3 (-x^2y^3)^2 ÷ [ (2xy)^4(-3x) ]
= (4^3 x^6 y^3) [ (-1)^2 x^4 y^6 ] ÷ [ (2^4 x^4 y^4 (-3) x ]
= (64 x^6 y^3)(x^4 y^6) ÷ [ -48 x^5 y^4 ]
= 64/-48 x^(6+4-5) y^(3+6-4)
= -4/3 x^5 y^5
2007-10-16 6:32 am
hope i can help u
(4x^2 * y)^3 * (- x^2 * y^3)^2 ÷ [(2xy)^4 * (-3x)]
= 4^3 * x^6 * y^3 * -x^4 * y^6 ÷ 2^4 ÷ x^4 ÷ y^4 ÷ (-3x)
= (2^2)^3 * x^6 * y^3 * x^4 * y^6 * 2^-4 * x^-4 * y^-4 ÷ 3x
= (2^6 * 2^-4) * (x^6 * x^4 * x^-4) * (y^3 * y^6 * y^-4)
= 2^(6-4) * x^(6+4-4) * y^(3+6-4) ÷ 3x
= 2^2 * x^6 * y^5 * 3 * x^-1
= 4/3 x^5 y^5


收錄日期: 2021-04-13 19:02:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071014000051KK00118

檢視 Wayback Machine 備份