[數學]inequality一條...唔識做...

2007-10-14 6:31 am
given:
50x + 24y ≤ 2400
30x + 33y ≤ 2100
45 ≤ x ≤ 100
5 ≤ y ≤ 50

find the value of x and y so that (x+y) is maximum .

ANS: (x+y)max=51 when x = 45, and y = 6.

有無人識個步驟呀.........

回答 (4)

2007-10-14 6:50 am
✔ 最佳答案
25x+12y≤1200
10x+11y≤700
45≤x
x≤100
5≤y
y≤50
將上方的6條式畫出一個坐標圖
找出共同有的地方
let x+y=p
繪出其中一條p解的直線
用尺子向上下移,找出maximum value
or你可以找出圖中各個角的坐標,代入p式,以找出maximum value

2007-10-14 10:31:09 補充:
我想不到不畫圖又能解到的方法不過我覺得個ans應該是有小數的,如x=6000/133,y=800/133,
2007-10-18 9:15 pm
The problem is a standard linear programming.
You can use the standard simplex method to solve it without graphing it.

The language used in this webpage involves linear algebra, see if you can get it.

http://en.wikipedia.org/wiki/Linear_programming

Shoot me an email if you are interested.
2007-10-14 7:04 am
有, 50x+24y≤ 2400
50x+y=2400÷24
x+y=100÷50
x+y=2
24y=24×100 and 50x=50×2
So,y=100 and x=2.
Checking:Sub x=100 and x=2 into the formulae.
50x+24y≤ 2400
=50×2+24×100
=100+2400
=2500
The answer is corrert.
參考: me!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2007-10-14 6:35 am
very est


收錄日期: 2021-04-13 13:53:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071013000051KK05484

檢視 Wayback Machine 備份