F.2 Maths
Suppose z+1/z=3. Using the above results, or otherwise, evaluate
z^6+1/z^6
(With step)
回答 (6)
(z + 1/z)^2 = 9
z^2 + 2 + 1/z^2 = 9
z^2 + 1/z^2 = 7
(z^2 + 1/z^2)^2 = 49
z^4 + 2 + 1/z^4 = 49
z^4 + 1/z^4 = 47
(z + 1/z)^6
= z^6 + 6(z^5)(1/z) + 15(z^4)(1/z^2) + 20(z^3)(1/z^3) + 15(z^2)(1/z^4)
+ 6(z)(1/z^5) + 1/z^6
= z^6 + 6z^4 + 15z^2 + 20 + 15/z^2 + 6/z^4 + 1/z^6
= z^6 + 1/z^6 + 6z^4 + 6/z^4 + 15z^2 + 15/z^2 + 20
= (z^6 + 1/z^6) + 6(z^4 + 1/z^4) + 15(z^2 + 1/z^2) + 20
= (z^6 + 1/z^6) + 6(47) + 15(7) + 20
= (z^6 + 1/z^6) + 407
(z + 1/z)^6 = (z^6 + 1/z^6) + 407
3^6 = (z^6 + 1/z^6) + 407
z^6 + 1/z^6 = 322
2007-10-13 20:51:06 補充:
乜呢度咁多高手, 個個都識做嘻, 不過唔該投我一票, 唔該你啦....
z+1/z=3
square both sides,
(z+1/z)^2 =9
z^2 + 2 (z)(1/z) +1/z^2 =9
z^2+1/z^2 = 7
Then
(z^2+1/z^2)^3 = 7^3
(z^2)^3 + 3(z^2)^2 (1/z^2) + 3(z^2)(1/z^2)^2 +(1/z^2)^3 = 343
z^6 + 3z^2 + 3/z^2 + 1/z^6 = 343
z^6+1/z^6 + 3(z^2+1/z^2) = 343
z^6+1/z^6 = 343 -3(7)
= 322
z^6+1/z^6
=(z^2)^3+(1/z^2)^3
=(z^2+1/z^2)^3 - 3(1/z^2)(z^2)^2-3(z^2)(1/z^2)^2
=((z+1/z)^2-2)^3-3(z^2)-3(1/z^2)
=(3^2-2)^3-3(z^2+1/z^2)
=7^3-3*7
=343-21
=322
收錄日期: 2021-04-13 13:53:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071013000051KK04665
檢視 Wayback Machine 備份