✔ 最佳答案
1)設f ( x ) = ( x - 2 )( x + 3 ) + 2,
f ( k ) = k^2
( k - 2 )( k + 3 ) + 2 = k^2
k^2 + 3k - 2k - 6 + 2 = k^2
k - 4 = 0
k = 4
2) f (x) = 4x^2 - 3x - 5
f ( x - 1 ) = 4 ( x - 1 )^2 - 3 ( x - 1 ) - 5
= 4 ( x^2 - 2x + 1 ) - 3x + 3 - 5
= 4x^2 - 8x + 4 - 3x - 2
= 4x^2 - 11x + 2
設f ( x - 1 ) = g ( x ),
g ( x ) = 4x^2 - 11x + 2
g ( - 1 ) = 4 ( - 1 )^2 - 11 ( - 1 ) + 2
= 17
所以f(x-1)除以x+1時的餘數是17。
3)設f ( x ) = x^3 + kx^2 - x + 1,
f ( 2 ) = 2^3 + k ( 2 )^2 - 2 + 1
= 4k + 7
f ( 1 ) = 1^3 + k ( 1 )^2 - 1 + 1
= k + 1
已知: f ( 2 ) = 3 f ( 1 )
4k + 7 = 3 ( k + 1 )
4k + 7 = 3k + 3
k = -4
4) 設f ( x ) = x^2 + ax - b, g ( x ) = bx^2 - ax - 1,
f ( - 2 ) = - 4
( - 2 )^2 + a ( - 2 ) - b = -4
2a + b = 8 --- ( 1 )
g ( 2 ) = 1
b( 2 )^2 - a ( 2 ) - 1 = 1
a = 2b - 1 --- ( 2 )
代( 2 )入( 1 ),
2 ( 2b - 1 ) + b = 8
4b - 2 + b = 8
5b = 10
b = 2
a = 2 ( 2 ) - 1 = 3
所以a = 2, b = 3。