Mathz*餘式定理

2007-10-14 1:48 am
1* 當(x-2)(x+3)+2除以x-k時,餘數為k^2,求k的值。

2* 設f(x)=4x^2-3x-5。
  求f(x-1)除以x+1時的餘數。

3* 已知x^3+kx^2-x+1除以x-2的餘數是除以x-1的餘數的三倍。求k的值。

4* 當x^2+ax-b除以x+2時,餘數為-4;當bx^2-ax-1除以x-2時,餘數為1。求a和b的值。

回答 (1)

2007-10-14 5:24 am
✔ 最佳答案
1)設f ( x ) = ( x - 2 )( x + 3 ) + 2,

f ( k ) = k^2

( k - 2 )( k + 3 ) + 2 = k^2

k^2 + 3k - 2k - 6 + 2 = k^2

k - 4 = 0

k = 4

2) f (x) = 4x^2 - 3x - 5

f ( x - 1 ) = 4 ( x - 1 )^2 - 3 ( x - 1 ) - 5

= 4 ( x^2 - 2x + 1 ) - 3x + 3 - 5

= 4x^2 - 8x + 4 - 3x - 2

= 4x^2 - 11x + 2

設f ( x - 1 ) = g ( x ),

g ( x ) = 4x^2 - 11x + 2

g ( - 1 ) = 4 ( - 1 )^2 - 11 ( - 1 ) + 2

= 17

所以f(x-1)除以x+1時的餘數是17。

3)設f ( x ) = x^3 + kx^2 - x + 1,

f ( 2 ) = 2^3 + k ( 2 )^2 - 2 + 1

= 4k + 7

f ( 1 ) = 1^3 + k ( 1 )^2 - 1 + 1

= k + 1

已知: f ( 2 ) = 3 f ( 1 )

4k + 7 = 3 ( k + 1 )

4k + 7 = 3k + 3

k = -4

4) 設f ( x ) = x^2 + ax - b, g ( x ) = bx^2 - ax - 1,

f ( - 2 ) = - 4

( - 2 )^2 + a ( - 2 ) - b = -4

2a + b = 8 --- ( 1 )

g ( 2 ) = 1

b( 2 )^2 - a ( 2 ) - 1 = 1

a = 2b - 1 --- ( 2 )

代( 2 )入( 1 ),

2 ( 2b - 1 ) + b = 8

4b - 2 + b = 8

5b = 10

b = 2

a = 2 ( 2 ) - 1 = 3

所以a = 2, b = 3。
參考: My Maths Knowledge


收錄日期: 2021-04-11 17:36:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071013000051KK03519

檢視 Wayback Machine 備份