✔ 最佳答案
2(sinx+cosx)=root 3 +1
4(sin^2 x+cos^2 x+2sinxcosx)=3+1+2*root3....................(by squaring)
4(1+sin2x)=4+2*root3...................................(sin^2 x+cos^2=1 & 2sinxcosx=sin2x)
4sin2x=2*root3
sin2x=(root3)/2
2x=180n+60*(-1)^n..........for some +ve integers n
x=90n+30*(-1)^n
(in degree)
6tan^2 x-4sin^2 x=1
6sin^2 x-4(sin^2 x)(cos^2 x)-cos^2 x=0.........................(by multiplying cos^2 x)
6sin^2 x-4(sin^2 x)(1-sin^2 x)-(1-sin^2 x)=0
4sin^4 x-3sin^2 x-1=0
(4sin^2 x-1)(sin^2 x+1)=0
sin^2 x=1/4............or...........sin^2 x= -1(rejected)
sin x=1/2
x=180n+30*(-1)^n..........for some +ve integers n
if general solution is not needed, the ans will be 30,60,210,240 for 2(sinx+cosx)=root 3 +1
and 30,150 for 6tan^2 x-4sin^2 x=1
2007-10-11 17:39:57 補充:
sorry, forgot to reject some ansfor 2(sinx cosx)=root 3 1it should be x=360n 30,360n 60if general solution is not needed, the ans will be 30,60 for 2(sinx cosx)=root 3 1
2007-10-11 17:51:28 補充:
forr 2(sinx+cosx)=root 3+1it should be x=360n+30,360n+60if general solution is not needed, the ans will be 30,60 for 2(sinx+cosx)=root 3+1
2007-10-11 17:51:55 補充:
in order words,it should bex=90n+30*(-1)^nsince sinx+cosx>0 and sinxcosx>0sinx>0 and cosx>0so, only 360n+30,360n+60 are solutionor simply reject 210 and 240 if general solution is not needed
2007-10-12 17:32:00 補充:
not using compound angle formulae and double angle formulae4(1+2sinxcosx)=4+2*root34sinxcosx=root316(sin^2 x)(cos^2 x)=316(sin^2 x)(1-sin^2 x)=316sin^4 x-16sin^2 x+3=0(4sin^2 x-3)(4sin^2 x-1)=0sin x=+-(root3)/2.............or.................sinx=+-1/2
2007-10-12 17:33:23 補充:
since sinx+cosx>0 and sinxcosx>0sinx>0 and cos>0sinx=(root3)/2.............or.................sinx=1/2x=360n+60 or x=360n+240(rej) or x=360n+30 or x=360n+210(rej) for some +ve integers nor simply x=60 or x=240(rej) or x=30 or x=210(rej)