proof for the formular of volume of cone/pyramid

2007-10-11 7:01 am
proof for the formular of volume of cone/pyramid


V= 1/3 x base area x height

回答 (2)

2007-10-12 8:58 am
✔ 最佳答案
Carson 的答案很好。我這個答案要解決的是一個更general的情況,一個任意形狀底的,也可以是斜的錐體。
我的方法generalize Carson他解決長方錐體體積公式的方法,想像錐體放在一個三維空間裏,把底放在x-y plane上。設錐體的頂點在(x,y,h)上,h是錐體的高。設這個錐體的底面積為A。
我現在把這個錐體水平切開成n份,每份的高度就是h/n,最低一份的體積必然小於Ah/n,也必然大於上一層的底面積 乘 h/n。
那麼上一層的底面積是甚麼呢,它是A[(n-1)/n]^2,證明如下:
如(p, q,0)是在底面積上邊上的任何一點,(p',q',h/n)是在第一層上的對應一點,則
(p,q,0), (p',q',h/n) 和 (x,y,h) 應該是在一條直線上,不難求出:
p' = p + (x - p) /n = (n-1)p/n +x/n
q' = q + (y - q) /n = (n-1)q/n +y/n
用2D變換的想法,這是變換了一次縮少和平移,平移是不會影響面積的,縮少則影響跟據比例的平方,所以第一層的面積為A[(n-1)/n]^2。
如此類推每層的體積上限是 A[(n - i+1) / n]^2 * h/n,而下限則為A[(n - i) / n]^2 * h/n。i 是由底數起,總共有n 層。
把每層的上限加起來就是錐體體積的上限,而每層的下限加起來就是錐體體積的下限。
加起來的上限是Ah(n)(n+1)(2n+1)/6n^3,而下限則是Ah(n)(n-1)(2n-1)/6n^3。 加法很容易,跳步了。當n愈大,上下限的差距愈少。用Squeezing Principle,我們可以把錐體體積定在上下限的共同極限,即Ah/3。
證明結束,QED。

2007-10-14 17:47:45 補充:
當 n 接近無限大,上限和下限都會接近Ah/3,這是因為所有非n^3都會因為分母變大得太快而變無限小。所以Squeezing Principle可以用來證明體積就是Ah/3。
參考: 想用15分鐘,打在成個鐘....
2007-10-11 3:20 pm
Imagine a step-pyramid made up of small square prisms with dimensions
a-by-a-by-b, arranged in square layers. If the layers are k-by-k for
k = 1, 2, 3, ..., n, then the total volume of the step-pyramid is:
V = a^2*b*[1^2 + 2^2 + 3^2 + ... + n^2],
= a^2*b*n*(n + 1)*(2*n + 1)/6 (which can be proved by induction),
= a^2*b*n^3*(1/3 + 1/[2*n] + 1/[6*n^2]).
Now, the height of the step-pyramid is h = b*n, and the area of the
base is:
B = a^2*n^2,
so the volume is:
V = h*B*(1/3 + 1/[2*n] + 1/n^2).
Now let n -> infinity, so the steps get smaller and smaller, and the
volume of the step-pyramid approaches the volume of the inscribed
pyramid. Then the right-hand side approaches h*B/3, as the volume V
approaches the volume of the pyramid.
This same proof works for a pyramid with any polygonal base. For a
cone, take a pyramid with a regular m-gon for a base, and let
m -> infinity.
The base approaches a circle, and the pyramid approaches a cone, and
the formula V = h*B/3 still holds in the limit.
There is another proof, which cuts a rectangular solid into six pieces
of equal volume, each of which is a triangular pyramid (or irregular
tetrahedron). This proves that the volume of each is 1/6th the volume
of the starting rectangular solid, and each has base of area 1/2 the
area of one of the faces of the solid, and height equal to the
dimension of the solid perpendicular to that face.
r is the radius of the base of the cone
h is the height of the cone
s is the radius of the cross-section of the cone (0<s<r)
x is the distance between the specific cross-section to the tip of the cone (0<x<h)

圖片參考:http://www.mph.net/coelsner/calcapps/cone_exprn_files/eq0001L.gif

I hope this can help your understanding. :)


收錄日期: 2021-04-13 13:51:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071010000051KK04553

檢視 Wayback Machine 備份