問數,關於函數取值問題~

2007-10-11 5:16 am
函數y=x^2(1-3x) (0<1/3)的最大值和最小值分別為多少?

我需要過程~謝謝~

回答 (2)

2007-10-11 8:22 am
✔ 最佳答案
y = x^2(1-3x)
y = x^2 - 3x^3
y' = 2x - 9x^2
y' = x(2 - 9x)
For y = 0, x = 0, 0, 1/3
For y' = 0, x = 0, 2/9
for 0 < x < 1/3
0 < x^2 < 1/9
0 > -3x > -1
1 > 1-3x > 0
0 < 1-3x < 1
so 0 < x^2(1-3x) < 1/9
thus for 0 < x < 1/3 the max value for y is at x=2/9, and the min value for y is at x=0 and x=1/3
The max value for y is (2/9)^2(1-3*2/9) = 4/243
The min value for y is (0)^2(1-3*0) or (1/3)^2(1-3*1/3)
= 0 or 0
The min value for y is 0
I hope this can help your understanding. :)
2007-10-12 7:38 am
如果可以解釋一下constraint optimization要考慮boundary就更容易理解了。


收錄日期: 2021-04-13 13:51:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071010000051KK03814

檢視 Wayback Machine 備份