✔ 最佳答案
Given the curve c: y=(x^2)/(1+x)-4/3,where x not=-1
A)Find the x- and y-intercepts of the curve C.
put x = 0,
y = -4/3
put y = 0,
(x^2)/(1+x) - 4/3 = 0
(x^2)/(1+x) = 4/3
3x^2 = 4(1+x)
3x^2 - 4x - 4 = 0
(3x + 2)(x - 2) = 0
x = -2/3 or x = 2
x-intercepts = -2/3 and 2
y-intercept = -4/3
-----------------------------------------------------------------------------
B)Find dy/dx and show that d^2y/dx^2 = 2/(1+x)^3
y = (x^2)/(1+x) - 4/3
= x - 1 + 1/(x+1) - 4/3
= x + 1/(x+1) - 7/3
dy/dx
= 1 - 1/(x+1)^2
d^2 y/dx^2
= 2/(x+1)^3
-----------------------------------------------------------------------------
C)Find the turning point(s) of the curve C
set dy/dx = 0,
1 - 1/(x+1)^2 = 0
(x+1)^2 = 1
x = 0 or x = -2
when x = 0, y = -4/3
when x = -2, y = -16/3
turning points (0, -4/3), (-2, -16/3)
-----------------------------------------------------------------------------
For each turning point, test whether it is a maximum or a minimum point
d^2 y/dx^2 (at x=0) > 0
d^2 y/dx^2 (at x=-2) < 0
min point = (0, -4/3)
max point = (-2, -16/3)
-----------------------------------------------------------------------------
In the figure, sketch the curve C for
i)-5<= x <= -1
ii)-1<= x <= 3
呢度就劃唔到個圖比你
大致 x < -1, 向下開口既 U 字, 近 x = -1 時, 負無限大
x > -1, 向上開口既 U 字, cut x-軸 -2/3 and 2, 近 x = -1 時, 正無限大
自己試下劃,
所有資料都幫你搵左