✔ 最佳答案
Prove that 5^n-3^n-2^n is divisible by 30 for all positive odd integers greater than 1
5^3 - 3^3 - 2^3
= 90
is divisible by 30
assume 5^k - 3^k - 2^k is divisible by 30, k is odd integer greater than 1
5^k - 3^k - 2^k = 30m, where m is integer
consider
5^(k+2) - 3^(k+2) - 2^(k+2)
= (25)5^k - (9)3^k - (4)2^k
= (25) [ 30m + 3^k + 2^k ] - (9)3^k - (4)2^k
= (25)(30m) + (25)3^k + (25)2^k - (9)3^k - (4)2^k
= (25)(30m) + (16)3^k + (21)2^k
去到呢步, 停一停, 去證明下面另一條 M.I. 先
----------------------------------------------------
(16)3^k + (21)2^k is divisible by 30 for k odd integer greater than 1
(16)3^3 + (21)2^3 = 600 is divisible by 30
assume (16)3^p + (21)2^p is divisible by 30, p is odd integer greater than 1
(16)3^p + (21)2^p = 30q, q is integer
consider
(16)3^(p+2) + (21)2^(p+2)
= (9)(16)3^p + (84)2^p
= (9) [ 30q - (21)2^p ] + (84)2^p
= (9) 30q - (189)2^p + (84)2^p
= (9) 30q - (105)2^p
= (9) 30q - (210)2^(p-1)
= (30) [ 9q - (7)2^(p-1) ]
because 9q - (7)2^(p-1) is integer
(16)3^(p+2) + (21)2^(p+2) is divisible by 30
so, when case k = p is true, case k = p+2 is also true
by M.I., (16)3^k + (21)2^k is divisible by 30 for k odd integer greater than 1
-------------------------------------------------------------
好, 返回第一條 M.I.
(25)(30m) + (16)3^k + (21)2^k 證明到
is divisible by 30
所以第一條都證明完,
明未?