多項式有條數唔識(5分)

2007-10-10 12:28 am
(a+2)(a-1)(a-3)

就只呢條,我唔確定我既答案岩唔岩,我係咁做既

(a)(a)(a-3)+(2)(-1)(a-3)

=a^3-3a^2-2a+6

有問題麻煩修正

回答 (7)

2007-10-10 12:49 am
✔ 最佳答案
我計到 a^3 - 2a^2 - 5a + 6
步驟如下:

(a+2)(a-1)(a-3)

= (a^2 + 2a - a - 2) (a - 3)

= (a^2 + a - 2) (a - 3)

= a^3 + a^2 - 2a - 3a^2 - 3a + 6

= a^3 + a^2 - 3a^2 - 2a - 3a + 6

= a^3 - 2a^2 - 5a + 6

2007-10-09 16:50:47 補充:
我先計頭兩項,再計第三項。逐步慢慢拆就應該岩。

2007-10-10 00:51:02 補充:
(a+2)(a-1)(a-3)= [a(a-1)+(2)(a-1)] (a-3) --- 先計頭兩項,所以加了一對引號 = (a^2-a+2a-2) (a-3)= (a^2+a-2) (a-3) ---把已拆了的頭兩項作加減而得出的姑果= a(a^2+a-2) - 3(a^2+a-2) --- 把(a-3)拆進前面的結果= a^3+a^2-2a-3a^2-3a+6= a^3+a^2-3a^2-2a-3a+6 --- 以次序排= a^3-2a^2-5a+6

2007-10-10 00:59:44 補充:
直式計法: (a 2)x (a-1)-------------- a^2 2a --- (a 2)(a)+) -a- 2 --- (a 2)(-1)---------------- a^2 a-2 --- 已把(a 2)(a-1)拆掉x (a-3)----------------a^3 a^2-2a --- (a^2 a-2)(a)+) -3a^2-3a 6 --- (a^2 a-2)(-3)----------------------a^3-2a^2-5a 6 = Answer
參考: me
2007-10-10 12:57 am
你好,

我的答案應該是 a^3-2a^2-5a+6

計算過程:
先將其中兩項相乘.

[(a+2)(a-1)](a-3)
=(a^2-a+2a-2)(a-3)
=a^3-3a^2-a^2+3a+2a^2-6a-2a+6
=a^3-2a^2-5a+6


[(a+2)(a-3)](a-1)
=(a^2-3a+2a-6)(a-1)
=a^3-a^2-3a^2+3a+2a^2-2a-6a+6
=a^3-2a^2-5a+6

希望幫到你吧!!
2007-10-10 12:50 am
(a+2)(a-1)(a-3)
=( a+2 )( a^2 -4a +3 )
=a( a^2 -4a +3 )+2( a^2 -4a +3 )
=a^3 -4a^2 +3a +2a^2 -8a +6
=a^3 -2a^2 -5a +6

計數
是不能一次過計的
要漸進的
一個個解決
參考: 自己
2007-10-10 12:49 am
如果你不確定有否做錯,可逐步拆
(a+2)(a-1)(a-3)
=(a-1)(a^2-3a+2a-6)
=(a-1)a^2-a(a-1)-6(a-1)
=a^3-a^2-a^2+a-6a+6
=a^3-2a^2-5a+6
所以你錯了
至少在你的步驟中(a+2)的2應該乘一次(a-1)的a
(a-1)的-1應該乘一次(a+2)的a
諸如此類......
你的答案算少了數個項
2007-10-10 12:45 am
遇到三項式以上既...
唔可以好似你咁一次過計晒...
因為你咁計就會少左一忽野...
要2個2個咁計...
[ (a+2) (a)+(a+2) (-1) ] (a-3)
=[ a^2+2a-a-2 ] (a-3)
=(a^2+a-2) (a-3)
=(a^2+a-2) (a)+(a^2+a-2) (-3)
=a^3+a^2-2a-3a^2-3a+6
=a^3+a^2-3a^2-2a-3a+6
=a^3-2a^2-6a+6

2007-10-09 16:47:25 補充:
呀...岩岩打錯左...打得太急tim-.-答案係=a^3-2a^2-5a 6
參考: myself
2007-10-10 12:42 am
Wrong,it is:a^4-2a-4
I maybe wrong!
2007-10-10 12:41 am
(a+2)(a-1)(a-3)

= (a^2 + a - 2)(a-3)

=a^3 + a^2 - 2a - 3a^2 - 3a + 6

= a^3 - 2a^2 - 5a + 6
參考: ME


收錄日期: 2021-04-13 18:44:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071009000051KK01702

檢視 Wayback Machine 備份