maths f.2 easy

2007-10-09 4:35 am
Prove that the following equations are identities.

1) (x+2)^2-(x-2)^2=8x

LHS=?

RHS=?

LHS=RHS

回答 (4)

2007-10-09 5:27 pm
✔ 最佳答案
LHS = (x+2)^2-(x-2)^2
= (x+2)(x+2)-(x-2)(x-2)
= [(x)(x+2)+2(x+2)]-[(x)(x-2)-2(x-2)]
= (x^2+2x+2x+4)-(x^2-2x-2x+4)
= (x^2+4x+4)-(x^2-4x+4)
= x^2+4x+4-x^2+4x-4
= 8x
= RHS
2008-02-04 8:02 pm
=(x+2+x-2)(x+2-x+2)
=(2x)(4)
=8x
這樣快好多﹗
2007-10-09 4:48 am
直接expand幾易計,
不過有另一個計算方法,就係用a^2-b^2=(a+b)(a-b)呢條式
LHS=(x+2+x-2)(x+2-x+2)
=2x*4
=8x
=RHS
2007-10-09 4:39 am
LHS = x^2 + 4x + 4 - x^2 + 4x - 4
= 8x
SO LHS= RHS


收錄日期: 2021-04-13 13:49:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071008000051KK03695

檢視 Wayback Machine 備份