F.4 的 MATHS

2007-10-08 3:41 am
if the equation x^2-ax-40=0 has two distinct rea roots, suggest two possible values for a

做呢D數應該點做呀?
我唔識寫個格式出黎..

回答 (3)

2007-10-08 3:52 am
✔ 最佳答案
∵the equation has two distinct real roots
∴b2 – 4ac > 0
(-a)2 – 4(1)(40) > 0
a2 –160 >0
a2 > 160
a > 4√10
the two possible values for a should be 13、14

2007-10-07 20:16:53 補充:
睇漏左個負號變成‘x^2 - ax+40 = 0’應該是‘x^2 - ax - 40 = 0’(-a)^2 – 4(1)(-40) 0a^2 +160 0a^2 - 160a -4√10 ∴the two possible values for a should be -11、-10

2007-10-07 20:18:20 補充:
顯示唔到大於的符號(-a)^2 – 4(1)(-40) 0a^2 +160>0a^2>- 160a> -4√10 答案沒有影響
2007-10-08 4:03 am
x^2-ax-40=0
∵the equation has 2 distinct real roots
∴△>0
(-a)^2-4(1)(-40)>0
a^2+160>0
a^2>-160
a>40 or a>-40

唔知係我計錯定條問有問題
suggest two possible values for a
我計到既係range範圍a>40 or a>-40

2007-10-07 20:08:42 補充:
sorry係我計錯應該係a^2>160a √160 or a -√160a 4√10 or a -4√10
參考: myself
2007-10-08 3:55 am
Assume m and n are the 2 distinct real roots, then m*n = -40, m+ n = a

Let take the factor of -40, then we have when m = 1, n = -40 => a = -39
when m = -1, n = 40 => a = 39
when m = 2, n =-20 => a = -18
when m = -2, n = 20 => a = 18

etc.
參考: my self


收錄日期: 2021-04-13 13:48:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20071007000051KK04909

檢視 Wayback Machine 備份