✔ 最佳答案
1. 若點P在y軸上一點,假設P的座標是(0,p):
PA線段的平方+PB線段的平方
= (0-5)2 + (p-4)2 + (0-2)2 + (p+2)2
= 25 + p2 - 8p + 16 + 4 + p2 + 4p + 4
= 2p2 - 4p + 49
再用配方法找(2p2 - 4p + 49)的最小值:
2p2 - 4p + 49
= 2(p2 - 2p) + 49
= 2(p2 - 2p + 1) - 2 + 49
= (p-1)2 + 47
PA線段的平方+PB線段的平方最小值是47。[當時P的座標是(0,1)]
2. 假設一元二次函數f(x) = ax2 + bx + c
與x軸之交點為(-1,0)及(5,0)
即f(-1) = 0、f(5) = 0
f(-1) = 0
0 = a - b + c ... (1)
f(5) = 0
0 = 25a + 5b + c ... (2)
(2) - (1)
0 = 24a + 6b
0 = 4a + b
b = -4a ... (3)
代(3)入f(x) = ax2 + bx + c、f(x)最大值9:
9 = ax2 - 4ax + c
9/a = x2 - 4x + c/a
x2 - 4x + c/a - 9/a = 0
x2 - 4x + 4 - 4 + c/a - 9/a = 0
(x-2)2 - 4 + c/a - 9/a = 0
當(x-2)2 = 0, -4 + c/a - 9/a = 0
c/a - 9/a = 4
c - 9 = 4a
c = 4a + 9 ... (4)
代(3)、(4)入f(x) = ax2 + bx + c:
f(x) = ax2 - 4ax + 4a + 9
代入f(-1) = 0
0 = a + 4a + 4a + 9
a = -1 ... (5)
代(3)、(4)、(5)入f(x) = ax2 + bx + c:
f(x) = -x2 + 4x + 5
2007-10-07 18:17:56 補充:
1. 更正:...= 2(p2 - 2p 1) - 2 49= 2(p-1)^2 47PA線段的平方 PB線段的平方最小值是47。[當時P的座標是(0,1)]
2007-10-07 18:19:02 補充:
1. 更正:...= 2(p^2 - 2p + 1) - 2 + 49= 2(p-1)^2 + 47PA線段的平方 PB線段的平方最小值是47。[當時P的座標是(0,1)]