✔ 最佳答案
1) 用恆等式: a^2 - b^2 = ( a + b )( a - b ),
( 3 - m )^2 - 144
= ( 3 - m)^2 - 12^2
= [ ( 3 - m ) + 12 ][ ( 3 - m - 12 )]
= ( 3 - m + 12 )( 3 - m -12 )
= ( 15 - m )( - 9 - m )
= ( m - 15 )( m + 9 )
2) 用十字相乘法:
2a + 1
3a - 2
---------------
3a - 4a = -a
所以6a^2 - a - 2 = ( 2a + 1 )( 3a - 2 )
3) 用十字相乘法:
2a + 5b
3a - b
----------------------
15ab - 2ab = 13ab
所以6a^2+13ab-5b^2 = ( 2a + 5b )( 3a - b )
4) 用十字相乘法:
-2a- 6b
2a - b
---------------------------
-12ab + 2ab = -10ab
所以-4a^2-10ab+6b^2
= ( - 2a - 6b )( 2a - b )
= -2 ( a + 3b )( 2a - b )
5) 192a^3-375b^3
= 3 ( 64a^3 - 125b^3 )
= 3 [ ( 4a )^3 - ( 5b )^3 ]
= 3 ( 4a - 5b )( 16a^2 + 20ab + 25b^2 )
[用恆等式:a^3 - b^3=(a-b)(a^2+ab+b^2)]
2007-10-03 23:14:10 補充:
8x^3-125y^3 = (2x)^3 - (5y)^3= ( 2x - 5y )( 4x^2 + 10y + 25y^2 )[用恆等式:a^3 - b^3=(a-b)(a^2+ab+b^2)]